527 research outputs found

    Saturated phase densities of (CO2 + H2O) at temperatures from (293 to 450) K and pressures up to 64 MPa

    Get PDF
    An apparatus consisting of an equilibrium cell connected to two vibrating tube densimeters and two syringe pumps was used to measure the saturated phase densities of (CO2 + H2O) at temperatures from (293 to 450) K and pressures up to 64 MPa, with estimated average standard uncertainties of 1.5 kg · m−3 for the CO2-rich phase and 1.0 kg · m−3 for the aqueous phase. The densimeters were housed in the same thermostat as the equilibrium cell and were calibrated in situ using pure water, CO2 and helium. Following mixing, samples of each saturated phase were displaced sequentially at constant pressure from the equilibrium cell into the vibrating tube densimeters connected to the top (CO2-rich phase) and bottom (aqueous phase) of the cell. The aqueous phase densities are predicted to within 3 kg · m−3 using empirical models for the phase compositions and partial molar volumes of each component. However, a recently developed multi-parameter equation of state (EOS) for this binary mixture, Gernert and Span [32], was found to under predict the measured aqueous phase density by up to 13 kg · m−3. The density of the CO2-rich phase was always within about 8 kg · m−3 of the density for pure CO2 at the same pressure and temperature; the differences were most positive near the critical density, and became negative at temperatures above about 373 K and pressures below about 10 MPa. For this phase, the multi-parameter EOS of Gernert and Span describes the measured densities to within 5 kg · m−3, whereas the computationally-efficient cubic EOS model of Spycher and Pruess (2010), commonly used in simulations of subsurface CO2 sequestration, deviates from the experimental data by a maximum of about 8 kg · m−3

    Speeds of sound in binary mixtures of water and carbon dioxide at temperatures from 273 K to 313 K and at pressures up to 50 MPa

    Get PDF
    Knowledge of thermodynamic properties of aqueous solutions of CO2 is crucial for various applications including climate science, carbon capture, utilisation and storage (CCUS), and seawater desalination. However, there is a lack of reliable experimental data, and the equation of state (EOS) predictions are not reliable, particularly for sound speeds in low CO2 concentrations typical of water resources. For this reason, we have measured speeds of sound in three different aqueous solutions containing CO2. We report speeds of sound in the single-phase liquid region for binary mixtures of water and CO2 for mole fractions of CO2 of 0.0118, 0.0066 and 0.0015 at temperatures from 273.15 K to 313.15 K and at pressures up to 50 MPa, measured using a dual-path pulse-echo apparatus. The relative standard uncertainties of the sound speeds are 0.05 %, 0.03 % and 0.01 % at 0.0118, 0.0066 and 0.0015 CO2 mole fractions, respectively. The change in sound speeds as functions of composition, pressure and temperature are analysed in this study. We find that dissolution of CO2 in water increases its sound speeds at all conditions, with the greatest increase occurring at the highest mole fractions of CO2. Our sound speed data agree well with the limited available experimental data in the literature but deviate from the EOS-CG of Gernert and Span by up to 7 % at the lowest temperatures, highest pressures, and highest CO2 mole fraction. The new low-uncertainty sound speed data presented in this work could provide a basis for development of an improved EOS and in establishing reliable predictions of the change in thermodynamic properties of seawater-like mixtures due to absorption of CO2 gas

    The Dispersal Ecology of Rhodesian Sleeping Sickness Following Its Introduction to a New Area

    Get PDF
    Tsetse-transmitted human and animal trypanosomiasis are constraints to both human and animal health in sub-Saharan Africa, and although these diseases have been known for over a century, there is little recent evidence demonstrating how the parasites circulate in natural hosts and ecosystems. The spread of Rhodesian sleeping sickness (caused by Trypanosoma brucei rhodesiense) within Uganda over the past 15 years has been linked to the movement of infected, untreated livestock (the predominant reservoir) from endemic areas. However, despite an understanding of the environmental dependencies of sleeping sickness, little research has focused on the environmental factors controlling transmission establishment or the spatially heterogeneous dispersal of disease following a new introduction. In the current study, an annually stratified case-control study of Rhodesian sleeping sickness cases from Serere District, Uganda was used to allow the temporal assessment of correlations between the spatial distribution of sleeping sickness and landscape factors. Significant relationships were detected between Rhodesian sleeping sickness and selected factors, including elevation and the proportion of land which was “seasonally flooding grassland” or “woodlands and dense savannah.” Temporal trends in these relationships were detected, illustrating the dispersal of Rhodesian sleeping sickness into more ‘suitable’ areas over time, with diminishing dependence on the point of introduction in concurrence with an increasing dependence on environmental and landscape factors. These results provide a novel insight into the ecology of Rhodesian sleeping sickness dispersal and may contribute towards the implementation of evidence-based control measures to prevent its further spread

    Dissociation between the Activity of the Right Middle Frontal Gyrus and the Middle Temporal Gyrus in Processing Semantic Priming

    Get PDF
    The aim of this event-related functional magnetic resonance imaging (fMRI) study was to test whether the right middle frontal gyrus (MFG) and middle temporal gyrus (MTG) would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP), the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR), the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR) employed either the onomatopoeia “oink” as the prime and the referent “pig” as the target (OP) or vice-versa (PO) since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target “pig” (OP) and the physically equivalent target in CTR elicited comparable deactivations whereas target “oink” (PO) elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore