150 research outputs found

    Réplication résiduelle du VIH-1 et homéostasie lymphocytaire T sous traitement antirétroviral efficace

    Get PDF
    Une réplication résiduelle du HIV-1 et une déplétion des lymphocytes T CD4+ intestinaux semblent pouvoir persister chez les sujets recevant un traitement antirétroviral. D'une part, notre étude a montré que la virémie résiduelle persistant chez certains patients sous traitement, provient d'un relargage passif à partir des réservoirs cellulaires latents et d'une réplication virale active. Cette virémie résiduelle est associée au niveau d'activation lymphocytaire chez les patients présentant une faible reconstitution immunitaire et pourrait ainsi contribuer au dysfonctionnement immunitaire persistant sous traitement antirétroviral prolongé. D'autre part, nos travaux ont mis en évidence un défaut de homing des lymphocytes T CD4+ CCR9+α4ß7+ vers la muqueuse intestinale qui semble contribuer à la persistance d'une translocation de produits microbiens de la lumière intestinale vers le sang et participer ainsi au maintien d'une activation lymphocytaire néfaste à la reconstitution immunitaire.HIV-1 residual replication and CD4+ T-cell depletion are likely to persist in HIV-infected patients on antiretroviral therapy. We find evidence that the residual viremia that persist in some patients despite prolonged antiretroviral therapy could be due to the release of archival virus from reservoir cells and/or ongoing virus replication. Our results also showed that the residual viremia in the poor immunological responders to antiretroviral therapy was positively correlated with the activation of their CD4+ and CD8+ T-cells. The ongoing low-level virus production despite antiretroviral therapy in some patients might thus contribute to persistent immune activation. Additionally we demonstrate persistent alteration of CCR9+α4ß7+ CD4 T-cells homing to the GALT in HIV-infected patient. This lack of recruitment of CD4+ T-cells contributes to the gut mucosal damage, microbial translocation, and systemic T cell activation and could be involved in incomplete mucosal immune reconstitution

    In Vivo Models of Human Immunodeficiency Virus Persistence and Cure Strategies

    Get PDF
    Current HIV therapy is not curative regardless of how soon after infection it is initiated or how long it is administered, and therapy interruption almost invariably results in robust viral rebound. Human immunodeficiency virus persistence is therefore the major obstacle to a cure for AIDS. The testing and implementation of novel yet unproven approaches to HIV eradication that could compromise the health status of HIV-infected individuals might not be ethically warranted. Therefore, adequate in vitro and in vivo evidence of efficacy is needed to facilitate the clinical implementation of promising strategies for an HIV cure. Animal models of HIV infection have a strong and well-documented history of bridging the gap between laboratory discoveries and eventual clinical implementation. More recently, animal models have been developed and implemented for the in vivo evaluation of novel HIV cure strategies. In this article, we review the recent progress in this rapidly moving area of research, focusing on the two most promising model systems: humanized mice and nonhuman primates

    Increase of CXCR3+ T cells impairs Th17 cells recruitment in the small intestine mucosa through IFN-g and IL-18 during treated HIV-1 infection

    Get PDF
    The restoration of CD4+ T cells, especially T-helper type 17 (Th17) cells, remains incomplete in the gut mucosa of most human immunodeficiency virus type 1 (HIV-1)–infected individuals despite sustained antiretroviral therapy (ART). Herein, we report an increase in the absolute number of CXCR3+ T cells in the duodenal mucosa during ART. The frequencies of Th1 and CXCR3+ CD8+ T cells were increased and negatively correlated with CCL20 and CCL25 expression in the mucosa. In ex vivo analyses, we showed that interferon γ, the main cytokine produced by Th1 and effector CD8+ T cells, downregulates the expression of CCL20 and CCL25 by small intestine enterocytes, while it increases the expression of CXCL9/10/11, the ligands of CXCR3. Interleukin 18, a pro-Th1 cytokine produced by enterocytes, also contributes to the downregulation of CCL20 expression and increases interferon γ production by Th1 cells. This could perpetuate an amplification loop for CXCR3-driven Th1 and effector CD8+ T cells recruitment to the gut, while impairing Th17 cells homing through the CCR6-CCL20 axis in treated HIV-1–infected individuals

    Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques

    Get PDF
    Zika virus (ZIKV) infection has a profound impact on the fetal nervous system. The postnatal period is also a time of rapid brain growth, and it is important to understand the potential neurobehavioral consequences of ZIKV infection during infancy. Here we show that postnatal ZIKV infection in a rhesus macaque model resulted in long-term behavioral, motor, and cognitive changes, including increased emotional reactivity, decreased social contact, loss of balance, and deficits in visual recognition memory at one year of age. Structural and functional MRI showed that ZIKV-infected infant rhesus macaques had persistent enlargement of lateral ventricles, smaller volumes and altered functional connectivity between brain areas important for socioemotional behavior, cognitive, and motor function (e.g. amygdala, hippocampus, cerebellum). Neuropathological changes corresponded with neuroimaging results and were consistent with the behavioral and memory deficits. Overall, this study demonstrates that postnatal ZIKV infection in this model may have long-lasting neurodevelopmental consequences

    Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques.

    Full text link
    HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques

    Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques

    Get PDF
    The Zika virus (ZIKV) epidemic is associated with fetal brain lesions and other serious birth defects classified as congenital ZIKV syndrome. Postnatal ZIKV infection in infants and children has been reported; however, data on brain anatomy, function, and behavioral outcomes following infection are absent. We show that postnatal ZIKV infection of infant rhesus macaques (RMs) results in persistent structural and functional alterations of the central nervous system compared to age-matched controls. We demonstrate ZIKV lymphoid tropism and neurotropism in infant RMs and histopathologic abnormalities in the peripheral and central nervous systems including inflammatory infiltrates, astrogliosis, and Wallerian degeneration. Structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) show persistent enlargement of lateral ventricles, maturational changes in specific brain regions, and altered functional connectivity (FC) between brain areas involved in emotional behavior and arousal functions, including weakened amygdala-hippocampal connectivity in two of two ZIKV-infected infant RMs several months after clearance of ZIKV RNA from peripheral blood. ZIKV infection also results in distinct alterations in the species-typical emotional reactivity to acute stress, which were predicted by the weak amygdala-hippocampal FC. We demonstrate that postnatal ZIKV infection of infants in this model affects neurodevelopment, suggesting that long-term clinical monitoring of pediatric cases is warranted

    Probiotic supplementation promotes a reduction in T-cell activation, an increase in Th17 frequencies, and a recovery of intestinal epithelium integrity and mitochondrial morphology in ART-treated HIV-1-positive patients

    Get PDF
    HIV infection is characterized by a persistent immune activation associated to a compromised gut barrier immunity and alterations in the profile of the fecal flora linked with the progression of inflammatory symptoms. The effects of high concentration multistrain probiotic (Vivomixx®, Viale del Policlinico 155, Rome, Italy in EU; Visbiome®, Dupont, Madison, Wisconsin in USA) on several aspects of intestinal immunity in ART-experienced HIV-1 patients was evaluated. METHODS: A sub-study of a longitudinal pilot study was performed in HIV-1 patients who received the probiotic supplement twice a day for 6 months (T6). T-cell activation and CD4+ and CD8+ T-cell subsets expressing IFNγ (Th1, Tc1) or IL-17A (Th17, Tc17) were stained by cytoflorimetric analysis. Histological and immunohistochemical analyses were performed on intestinal biopsies while enterocytes apoptosis index was determined by TUNEL assay. RESULTS: A reduction in the frequencies of CD4+ and CD8+ T-cell subsets, expressing CD38+ , HLA-DR+ , or both, and an increase in the percentage of Th17 cell subsets, especially those with central or effector memory phenotype, was recorded in the peripheral blood and in gut-associated lymphoid tissue (GALT) after probiotic intervention. Conversely, Tc1 and Tc17 levels remained substantially unchanged at T6, while Th1 cell subsets increase in the GALT. Probiotic supplementation was also associated to a recovery of the integrity of the gut epithelial barrier, a reduction of both intraepithelial lymphocytes density and enterocyte apoptosis and, an improvement of mitochondrial morphology sustained in part by a modulation of heat shock protein 60. CONCLUSIONS: These findings highlight the potential beneficial effects of probiotic supplementation for the reconstitution of physical and immunological integrity of the mucosal intestinal barrier in ART-treated HIV-1-positive patients

    Can research at the end of life be a useful tool to advance HIV cure?

    Full text link
    Despite extensive investigations, we still do not fully understand the dynamics of the total body HIV reservoir and how sub-reservoirs in various compartments relate to one another. Studies using macaque models are enlightening but eradication strategies will still need to be tested in humans. To take the next steps in understanding and eradicating HIV reservoirs throughout the body, we propose to develop a “peri-mortem translational research model” of HIV-infected individuals (called ‘The Last Gift’), which is similar to existing models in cancer research. In this model, altruistic, motivated HIV-infected individuals with advanced non-AIDS related diseases and with six months or less to live will participate in HIV cure research and donate their full body after they die. Engaging this population provides a unique opportunity to compare the HIV reservoir before and after death across multiple anatomic compartments in relation to antiretroviral therapy use and other relevant clinical factors. Furthermore, people living with HIV/AIDS at the end of their lives may be willing to participate to cure interventions and accept greater risks for research participation. A broad, frank, and pragmatic discussion about performing HIV cure research near the end of life is necessary

    Metabolic and anthropometric parameters contribute to ART-mediated CD4+ T cell recovery in HIV-1-infected individuals: an observational study

    Get PDF
    Background The degree of immune reconstitution achieved in response to suppressive ART is associated with baseline individual characteristics, such as pre-treatment CD4 count, levels of viral replication, cellular activation, choice of treatment regimen and gender. However, the combined effect of these variables on long-term CD4 recovery remains elusive, and no single variable predicts treatment response. We sought to determine if adiposity and molecules associated with lipid metabolism may affect the response to ART and the degree of subsequent immune reconstitution, and to assess their ability to predict CD4 recovery. Methods We studied a cohort of 69 (48 females and 21 males) HIV-infected, treatment-naïve South African subjects initiating antiretroviral treatment (d4T, 3Tc and lopinavir/ritonavir). We collected information at baseline and six months after viral suppression, assessing anthropometric parameters, dual energy X-ray absorptiometry and magnetic resonance imaging scans, serum-based clinical laboratory tests and whole blood-based flow cytometry, and determined their role in predicting the increase in CD4 count in response to ART. Results We present evidence that baseline CD4+ T cell count, viral load, CD8+ T cell activation (CD95 expression) and metabolic and anthropometric parameters linked to adiposity (LDL/HDL cholesterol ratio and waist/hip ratio) significantly contribute to variability in the extent of CD4 reconstitution (ΔCD4) after six months of continuous ART. Conclusions Our final model accounts for 44% of the variability in CD4+ T cell recovery in virally suppressed individuals, representing a workable predictive model of immune reconstitution
    corecore