51 research outputs found
Perceptions of trends in Seychelles artisanal trap fisheries: comparing catch monitoring, underwater visual census and fishers' knowledge
Fisheries scientists and managers are increasingly engaging with fishers' knowledge (FK) to provide novel information and improve the legitimacy of fisheries governance. Disputes between the perceptions of fishers and scientists can generate conflicts for governance, but can also be a source of new perspectives or understandings. This paper compares artisanal trap fishers' reported current catch rates with landings data and underwater visual census (UVC). Fishers' reports of contemporary 'normal' catch per day tended to be higher than recent median landings records. However, fishers' reports of 'normal' catch per trap were not significantly different from the median CPUE calculated from landings data, and reports of 'good' and 'poor' catch rates were indicative of variability observed in landings data. FK, landings and UVC data all gave different perspectives of trends over a ten-year period. Fishers' perceptions indicated greater declines than statistical models fitted to landings data, while UVC evidence for trends varied between sites and according to the fish assemblage considered. Divergence in trend perceptions may have resulted from differences in the spatial, temporal or taxonomic focus of each dataset. Fishers may have experienced and understood behavioural changes and increased fishing power, which may have obscured declines from landings data. Various psychological factors affect memory and recall, and may have affected these memory-based estimates of trends, while different assumptions underlying the analysis of both interview data and conventional scientific data could also have led to qualitatively different trend perceptions. Differing perspectives from these three data sources illustrate both the potential for 'cognitive conflicts' between stakeholders who do not rely on the same data sources, as well as the importance of multiple information sources to understand dynamics of fisheries. Collaborative investigation of such divergence may facilitate learning and improve fisheries governance
Interactive Marine Spatial Planning: Siting Tidal Energy Arrays around the Mull of Kintyre
The rapid development of the offshore renewable energy sector has led to an increased requirement for Marine Spatial Planning (MSP) and, increasingly, this is carried out in the context of the ‘ecosystem approach’ (EA) to management. We demonstrate a novel method to facilitate implementation of the EA. Using a real-time interactive mapping device (touch-table) and stakeholder workshops we gathered data and facilitated negotiation of spatial trade-offs at a potential site for tidal renewable energy off the Mull of Kintyre (Scotland). Conflicts between the interests of tidal energy developers and commercial and recreational users of the area were identified, and use preferences and concerns of stakeholders were highlighted. Social, cultural and spatial issues associated with conversion of common pool to private resource were also revealed. The method identified important gaps in existing spatial data and helped to fill these through interactive user inputs. The workshops developed a degree of consensus between conflicting users on the best areas for potential development suggesting that this approach should be adopted during MSP
Proxy Measures of Fitness Suggest Coastal Fish Farms Can Act as Population Sources and Not Ecological Traps for Wild Gadoid Fish
Background: Ecological traps form when artificial structures are added to natural habitats and induce mismatches between
habitat preferences and fitness consequences. Their existence in terrestrial systems has been documented, yet little evidence suggests they occur in marine environments. Coastal fish farms are widespread artificial structures in coastal ecosystems and are highly attractive to wild fish. Methodology/Principal Findings: To investigate if coastal salmon farms act as ecological traps for wild Atlantic cod (Gadus morhua) and saithe (Pollachius virens), we compared proxy measures of fitness between farm-associated fish and control fish caught distant from farms in nine locations throughout coastal Norway, the largest coastal fish farming industry in the world. Farms modified wild fish diets in both quality and quantity, thereby providing farm-associated wild fish with a strong trophic subsidy. This translated to greater somatic (saithe: 1.06–1.12 times; cod: 1.06–1.11 times) and liver condition indices (saithe: 1.4–1.8 times; cod: 2.0–2.8 times) than control fish caught distant from farms. Parasite loads of farm-associated wild fish were modified from control fish, with increased external and decreased internal parasites, however the strong effect of the trophic subsidy overrode any effects of altered loads upon condition. Conclusions and Significance: Proxy measures of fitness provided no evidence that salmon farms function as ecological traps for wild fish. We suggest fish farms may act as population sources for wild fish, provided they are protected from fishing while resident at farms to allow their increased condition to manifest as greater reproductive output.Funding was provided by the Norwegian Research Council Havet og kysten program to the CoastACE project (no: 173384)
Fishermen's local ecological knowledge on Southeastern Brazilian coastal fishes: contributions to research, conservation, and management
We analyzed fishermen's local ecological knowledge (LEK) about the feeding habits, trophic interactions, habitats, fishing grounds, migration, and reproduction of nine coastal fishes in Búzios Island, southeastern Brazilian coast. We interviewed 39 fishermen using standardized questionnaires. Fishermen's LEK on habitat use and trophic interactions for the studied fishes agreed with the scientific literature, allowing the organization of reef and pelagic food webs. The interviewed fishermen mentioned that submerged rock formations would be important habitats for some large commercial fishes, such as Seriola spp., Caranx latus and Epinephelus marginatus. In some instances there was no scientific data to be compared with fishermen's LEK, and thus this kind of knowledge would be the only available source of information, such as for reproduction and migration of most of the studied fishes. We suggest herein ways to apply fishermen's LEK to develop and improve fisheries management measures, such as zoning of marine space, marine protected areas, and closed fishing seasons. Fishermen's LEK may be an important and feasible support to fisheries management and co-management
Spatial access priority mapping (SAPM) with fishers : a quantitative GIS method for participatory planning
Spatial management tools, such as marine spatial planning and marine protected areas, are playing an increasingly important role in attempts to improve marine management and accommodate conflicting needs. Robust data are needed to inform decisions among different planning options, and early inclusion of stakeholder involvement is widely regarded as vital for success. One of the biggest stakeholder groups, and the most likely to be adversely impacted by spatial restrictions, is the fishing community. In order to take their priorities into account, planners need to understand spatial variation in their perceived value of the sea. Here a readily accessible, novel method for quantitatively mapping fishers’ spatial access priorities is presented. Spatial access priority mapping, or SAPM, uses only basic functions of standard spreadsheet and GIS software. Unlike the use of remote-sensing data, SAPM actively engages fishers in participatory mapping, documenting rather than inferring their priorities. By so doing, SAPM also facilitates the gathering of other useful data, such as local ecological knowledge. The method was tested and validated in Northern Ireland, where over 100 fishers participated in a semi-structured questionnaire and mapping exercise. The response rate was excellent, 97%, demonstrating fishers’ willingness to be involved. The resultant maps are easily accessible and instantly informative, providing a very clear visual indication of which areas are most important for the fishers. The maps also provide quantitative data, which can be used to analyse the relative impact of different management options on the fishing industry and can be incorporated into planning software, such as MARXAN, to ensure that conservation goals can be met at minimum negative impact to the industry. This research shows how spatial access priority mapping can facilitate the early engagement of fishers and the ready incorporation of their priorities into the decision-making process in a transparent, quantitative way
- …