64 research outputs found

    Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0.67Mg0.2Mn0.8O2

    Get PDF
    EJK would like to thank the Alistore ERI for the award of a studentship. This work was supported by the Faraday Institution (grant number FIRG018).Lithium-rich layered oxides and sodium layered oxides represent attractive positive electrode materials exhibiting excess capacity delivered by additional oxygen redox activity. However, structural degradation in the bulk and detrimental reactions with the electrolyte on the surface often occur, leading to limited reversibility of oxygen redox processes. Here we present the properties of P3-type Na0.67Mg0.2Mn0.8O2 synthesized under both air and oxygen. Both materials exhibit stable cycling performance in the voltage range 1.8-3.8 V where the Mn3+/Mn4+ redox couple entirely dominates the electrochemical reaction. Oxygen redox activity is triggered for both compounds in the wider voltage window 1.8-4.3 V with typical large voltage hysteresis from non-bonding O 2p states generated by substituted Mg. Interestingly, for the compound prepared under oxygen, an additional reversible oxygen redox activity is shown with exceptionally small voltage hysteresis (20 mV). The presence of vacancies in the transition metal layers is shown to play a critical role not only in forming unpaired O 2p states independent of substituted elements but also in stabilising the P3 structure during charge with reduced structural transformation to the O’3 phase at the end of discharge. This study reveals the important role of vacancies in P3-type sodium layered oxides to increase energy density using both cationic and anionic redox processes.PostprintPostprintPeer reviewe

    The XMM Cluster Survey: Forecasting cosmological and cluster scaling-relation parameter constraints

    Get PDF
    We forecast the constraints on the values of sigma_8, Omega_m, and cluster scaling relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Lambda-CDM Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity-temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only (T,z) self-calibration, we expect to measure Omega_m to +-0.03 (and Omega_Lambda to the same accuracy assuming flatness), and sigma_8 to +-0.05, also constraining the normalization and slope of the luminosity-temperature relation to +-6 and +-13 per cent (at 1sigma) respectively in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity-temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2sigma or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new `smoothed ML' estimate of expected constraints.Comment: 28 pages, 17 figures. Revised version, as accepted for publication in MNRAS. High-resolution figures available at http://xcs-home.org (under "Publications"

    The XMM Cluster Survey: X-ray analysis methodology

    Get PDF
    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5,776 XMM observations used to construct the current XCS source catalogue. A total of 3,675 > 4-sigma cluster candidates with > 50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg^2. Of these, 993 candidates are detected with > 300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of < 40 (< 10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMM images. These tests show that the simple isothermal beta-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically-confirmed clusters.Comment: MNRAS accepted, 45 pages, 38 figures. Our companion paper describing our optical analysis methodology and presenting a first set of confirmed clusters has now been submitted to MNRA

    Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates

    Get PDF
    Contains fulltext : 97744.pdf (publisher's version ) (Open Access)BACKGROUND: M. catarrhalis is a gram-negative, gamma-proteobacterium and an opportunistic human pathogen associated with otitis media (OM) and exacerbations of chronic obstructive pulmonary disease (COPD). With direct and indirect costs for treating these conditions annually exceeding $33 billion in the United States alone, and nearly ubiquitous resistance to beta-lactam antibiotics among M. catarrhalis clinical isolates, a greater understanding of this pathogen's genome and its variability among isolates is needed. RESULTS: The genomic sequences of ten geographically and phenotypically diverse clinical isolates of M. catarrhalis were determined and analyzed together with two publicly available genomes. These twelve genomes were subjected to detailed comparative and predictive analyses aimed at characterizing the supragenome and understanding the metabolic and pathogenic potential of this species. A total of 2383 gene clusters were identified, of which 1755 are core with the remaining 628 clusters unevenly distributed among the twelve isolates. These findings are consistent with the distributed genome hypothesis (DGH), which posits that the species genome possesses a far greater number of genes than any single isolate. Multiple and pair-wise whole genome alignments highlight limited chromosomal re-arrangement. CONCLUSIONS: M. catarrhalis gene content and chromosomal organization data, although supportive of the DGH, show modest overall genic diversity. These findings are in stark contrast with the reported heterogeneity of the species as a whole, as wells as to other bacterial pathogens mediating OM and COPD, providing important insight into M. catarrhalis pathogenesis that will aid in the development of novel therapeutic regimens

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients

    Mechanistic model of Rothia mucilaginosa adaptation toward persistence in the CF lung, based on a genome reconstructed from metagenomic data.

    Get PDF
    The impaired mucociliary clearance in individuals with Cystic Fibrosis (CF) enables opportunistic pathogens to colonize CF lungs. Here we show that Rothia mucilaginosa is a common CF opportunist that was present in 83% of our patient cohort, almost as prevalent as Pseudomonas aeruginosa (89%). Sequencing of lung microbial metagenomes identified unique R. mucilaginosa strains in each patient, presumably due to evolution within the lung. The de novo assembly of a near-complete R. mucilaginosa (CF1E) genome illuminated a number of potential physiological adaptations to the CF lung, including antibiotic resistance, utilization of extracellular lactate, and modification of the type I restriction-modification system. Metabolic characteristics predicted from the metagenomes suggested R. mucilaginosa have adapted to live within the microaerophilic surface of the mucus layer in CF lungs. The results also highlight the remarkable evolutionary and ecological similarities of many CF pathogens; further examination of these similarities has the potential to guide patient care and treatment
    corecore