32 research outputs found

    Life in earth – the root microbiome to the rescue?

    Get PDF
    Manipulation of the soil microbiome holds great promise for contributing to more environmentally benign agriculture, with soil microbes such as Pseudomonas promoting plant growth and effectively suppressing pathogenic microorganisms. Next-generation sequencing has enabled a new generation of research into soil microbiomes, presenting the opportunity to better understand and exploit these valuable resources. Soil bacterial communities are both highly complex and variable, and contain vast interspecies and intraspecies diversity, both of which respond to environmental variation. Therefore, we propose that a combination of whole microbiome analyses with in-depth examination of key microbial taxa will likely prove the most effective approach to understanding rhizosphere microbial interactions. This review highlights recent efforts in this direction, based around the important biocontrol bacterium Pseudomonas fluorescens

    Cryopreservation of a soil microbiome using a Stirling 1 cycle approach - a genomic assessment

    Get PDF
    Soil microbiomes are dynamic systems that respond to biotic and abiotic environmental factors such as those presented at seasonal scales or due to long-term anthropogenic regime shifts. These can affect the composition and function of microbiomes. Investigation of microbiomes can uncover hidden microbial roles in health and disease and discover microbiome-based interventions. Collections of soil samples are kept by various institutions in either a refrigerated or occasionally frozen state, but conditions are not optimised to ensure the integrity of soil microbiome. In this manuscript, we describe cryopreservation with a controlled rate cooler and estimate the genomic content of an exemplar soil sample before and after cryopreservation. The first hypothesis was to test the genomic integrity of the microbiome. We also enriched the soil sample with a liquid medium to estimate the growth of bacteria and compared their growth before and after cryopreservation. Sequence-based rRNA metabarcoding was used to demonstrate that the controlled rate cooler maintains intact the DNA content of the microbiome. Two methods of cryopreservation were applied and compared with control aliquots of soil. An optimised cryopreservation of soil samples is essential for the development of microbiome research in order to retain stable, functionally intact microbiomes. Our results showed that metabarcoding of 16S and ITS rRNA were useful methods to estimate successful cryopreservation. The soil microbiome after enrichment with liquid medium exhibited a similar response of cryopreserved soil and this was estimated with the comparison of the ten most abundant bacterial taxa. These findings support a successful process of cryopreservation and are promising for future use of this technology. To the best of our knowledge, this study is the first report of cryopreservation of soil using a Stirling cycle cooling approach

    Evidence for diversifying selection of genetic regions of encoding putative collagen-like host-adhesive fibers in Pasteuria penetrans

    Get PDF
    © FEMS 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Pasteuria spp. belong to a group of genetically diverse endospore-forming bacteria (phylum: Firmicutes) that are known to parasitize plant-parasitic nematodes and water fleas (Daphnia spp.). Collagen-like fibres form the nap on the surface of endospores and the genes encoding these sequences have been hypothesised to be involved in the adhesion of the endospores of Pasteuria spp. to their hosts. We report a group of 17 unique collagen-like genes putatively encoded by Pasteuria penetrans (strain: Res148) that formed five different phylogenetic clusters and suggest that collagen-like proteins are an important source of genetic diversity in animal pathogenic Firmicutes including Pasteuria. Additionally, and unexpectedly, we identified a putative collagen-like sequence which had a very different sequence structure to the other collagen-like proteins but was similar to the protein sequences in Megaviruses that are involved in host-parasite interactions. We, therefore, suggest that these diverse endospore surface proteins in Pasteuria are involved in biological functions, such as cellular adhesion; however, they are not of monophyletic origin and were possibly obtained de novo by mutation or possibly through selection acting upon several historic horizontal gene transfer events.Peer reviewedFinal Published versio

    The UK Crop Microbiome Cryobank: a utility and model for supporting Phytobiomes research

    Get PDF
    Plant microbiomes are the microbial communities essential to the functioning of the phytobiome—the system that consist of plants, their environment, and their associated communities of organisms. A healthy, functional phytobiome is critical to crop health, improved yields and quality food. However, crop microbiomes are relatively under-researched, and this is associated with a fundamental need to underpin phytobiome research through the provision of a supporting infrastructure. The UK Crop Microbiome Cryobank (UKCMC) project is developing a unique, integrated and open-access resource to enable the development of solutions to improve soil and crop health. Six economically important crops (Barley, Fava Bean, Oats, Oil Seed Rape, Sugar Beet and Wheat) are targeted, and the methods as well as data outputs will underpin research activity both in the UK and internationally. This manuscript describes the approaches being taken, from characterisation, cryopreservation and analysis of the crop microbiome through to potential applications. We believe that the model research framework proposed is transferable to different crop and soil systems, acting not only as a mechanism to conserve biodiversity, but as a potential facilitator of sustainable agriculture systems

    Multiple toxins and a protease contribute to the aphid‐killing ability of Pseudomonas fluorescens PpR24

    Get PDF
    Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host–pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent

    Agricultural intensification reduces selection of putative plant growth-promoting rhizobacteria in wheat

    Get PDF
    The complex evolutionary history of wheat has shaped its associated root microbial community. However, consideration of impacts from agricultural intensification has been limited. This study investigated how endogenous (genome polyploidization) and exogenous (introduction of chemical fertilizers) factors have shaped beneficial rhizobacterial selection. We combined culture-independent and -dependent methods to analyze rhizobacterial community composition and its associated functions at the root–soil interface from a range of ancestral and modern wheat genotypes, grown with and without the addition of chemical fertilizer. In controlled pot experiments, fertilization and soil compartment (rhizosphere, rhizoplane) were the dominant factors shaping rhizobacterial community composition, whereas the expansion of the wheat genome from diploid to allopolyploid caused the next greatest variation. Rhizoplane-derived culturable bacterial collections tested for plant growth-promoting (PGP) traits revealed that fertilization reduced the abundance of putative plant growth-promoting rhizobacteria in allopolyploid wheats but not in wild wheat progenitors. Taxonomic classification of these isolates showed that these differences were largely driven by reduced selection of beneficial root bacteria representative of the Bacteroidota phylum in allopolyploid wheats. Furthermore, the complexity of supported beneficial bacterial populations in hexaploid wheats was greatly reduced in comparison to diploid wild wheats. We therefore propose that the selection of root-associated bacterial genera with PGP functions may be impaired by crop domestication in a fertilizer-dependent manner, a potentially crucial finding to direct future plant breeding programs to improve crop production systems in a changing environment.Biotechnology and Biological Sciences Research Council (BBSRC)Rothamsted Research acknowledges strategic funding from the Biotechnology and Biological Sciences Research Council of the United Kingdom (BBSRC).This work was supported by the bilateral BBSRC-Embrapa grant on “Exploitation of the rhizosphere microbiome for sustainable wheat production” (BB/N016246/1); “Optimization of nutrients in soil-plant systems: How can we control nitrogen cycling in soil?” (BBS/E/C/00005196);.Institute Strategic Programmes “S2N – Soil to nutrition – Work package 1 – Optimizing nutrient flows and pools in the soil-plant-biota system” (BBS/E/C/000I0310) and “Growing Health Institute Strategic Programme [BB/X010953/1]; Work package 2: bio-inspired solutions for healthier agroecosystems: Understanding soil environments”(BBS/E/RH/230003B).The ISME Journa

    Microbiome definition re-visited: old concepts and new challenges

    Get PDF
    peer-reviewedAbstract The field of microbiome research has evolved rapidly over the past few decades and has become a topic of great scientific and public interest. As a result of this rapid growth in interest covering different fields, we are lacking a clear commonly agreed definition of the term “microbiome.” Moreover, a consensus on best practices in microbiome research is missing. Recently, a panel of international experts discussed the current gaps in the frame of the European-funded MicrobiomeSupport project. The meeting brought together about 40 leaders from diverse microbiome areas, while more than a hundred experts from all over the world took part in an online survey accompanying the workshop. This article excerpts the outcomes of the workshop and the corresponding online survey embedded in a short historical introduction and future outlook. We propose a definition of microbiome based on the compact, clear, and comprehensive description of the term provided by Whipps et al. in 1988, amended with a set of novel recommendations considering the latest technological developments and research findings. We clearly separate the terms microbiome and microbiota and provide a comprehensive discussion considering the composition of microbiota, the heterogeneity and dynamics of microbiomes in time and space, the stability and resilience of microbial networks, the definition of core microbiomes, and functionally relevant keystone species as well as co-evolutionary principles of microbe-host and inter-species interactions within the microbiome. These broad definitions together with the suggested unifying concepts will help to improve standardization of microbiome studies in the future, and could be the starting point for an integrated assessment of data resulting in a more rapid transfer of knowledge from basic science into practice. Furthermore, microbiome standards are important for solving new challenges associated with anthropogenic-driven changes in the field of planetary health, for which the understanding of microbiomes might play a key role. Video Abstrac

    Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 205-219, doi:10.1007/s10646-006-0122-0.Investigative efforts into the potential endocrine-disrupting effects of chemicals have mainly concentrated on vertebrates, with significantly less attention paid to understanding potential endocrine disruption in the invertebrates. Given that invertebrates account for at least 95% of all known animal species and are critical to ecosystem structure and function, it remains essential to close this gap in knowledge and research. The lack of progress regarding endocrine disruption in invertebrates is still largely due to: (1) our ignorance of mode-of-action, physiological control, and hormone structure and function in invertebrates; (2) lack of a standardized invertebrate assay; (3) the irrelevance to most invertebrates of the proposed activity-based biological indicators for endocrine disruptor exposure (androgen, estrogen and thyroid); (4) limited field studies. Past and ongoing research efforts using the standard invertebrate toxicity test model, the mysid shrimp, have aimed at addressing some of these issues. The present review serves as an update to a previous publication on the use of mysid shrimp for the evaluation of endocrine disruptors (Verslycke et al., 2004a). It summarizes recent investigative efforts that have significantly advanced our understanding of invertebrate-specific endocrine toxicity, population modeling, field studies, and transgeneration standard test development using the mysid model.Supported by a Fellowship of the Belgian American Educational Foundation
    corecore