135 research outputs found

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere

    Get PDF
    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer

    ALICE Collaboration

    Get PDF

    A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon Λ_{c}^{+} and the Λ_{c}^{+}/D^{0} production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sqrt[s_{NN}]=5.02  TeV. These new measurements show a clear decrease of the Λ_{c}^{+}/D^{0} ratio with increasing transverse momentum (p_{T}) in both collision systems in the range 2<p_{T}<12  GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/π and Λ/K_{S}^{0}. At low p_{T}, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e^{+}e^{-} and e^{-}p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon \u39bc+ and the \u39bc+/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sNN=5.02 TeV. These new measurements show a clear decrease of the \u39bc+/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/\u3c0 and \u39b/KS0. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e- and e-p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    Suppression in Pb-Pb Collisions at the LHC.

    Get PDF
    The production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5<y<4). The measurement of the ratio of the inclusive production cross sections of the ψ(2S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p_{T}<12  GeV/c. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio [σ^{ψ(2S)}/σ^{J/ψ}]_{Pb-Pb}/[σ^{ψ(2S)}/σ^{J/ψ}]_{pp}. It is found that in Pb-Pb collisions the ψ(2S) is suppressed by a factor of ∌2 with respect to the J/ψ. The ψ(2S) nuclear modification factor R_{AA} was also obtained as a function of both centrality and p_{T}. The results show that the ψ(2S) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to ∌3 with respect to pp. Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of R_{AA} with higher-p_{T} results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC

    First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors

    No full text

    Coherent photoproduction of rho(0) vector mesons in ultra-peripheral Pb-Pb collisions at root s(NN)=5.02 TeV

    No full text

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at sNN=2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions

    Multiplicity dependence of

    No full text
    This paper presents the measurements of π±\pi ^{\pm }, K±\mathrm {K}^{\pm }, p\text {p} and p‟\overline{\mathrm{p}} transverse momentum (pTp_{\text {T}}) spectra as a function of charged-particle multiplicity density in proton–proton (pp) collisions at s = 13 TeV\sqrt{s}\ =\ 13\ \text {TeV} with the ALICE detector at the LHC. Such study allows us to isolate the center-of-mass energy dependence of light-flavour particle production. The measurements reported here cover a pTp_{\text {T}} range from 0.1 to 20 GeV/c\text {GeV}/c and are done in the rapidity interval ∣y∣<0.5|y|<0.5. The pTp_{\text {T}}-differential particle ratios exhibit an evolution with multiplicity, similar to that observed in pp collisions at s = 7 TeV\sqrt{s}\ =\ 7\ \text {TeV}, which is qualitatively described by some of the hydrodynamical and pQCD-inspired models discussed in this paper. Furthermore, the pTp_{\text {T}}-integrated hadron-to-pion yield ratios measured in pp collisions at two different center-of-mass energies are consistent when compared at similar multiplicities. This also extends to strange and multi-strange hadrons, suggesting that, at LHC energies, particle hadrochemistry scales with particle multiplicity the same way under different collision energies and colliding systems
    • 

    corecore