201 research outputs found

    Implications of transient methane flux on associated biological communities in high-arctic seep habitats, Storbanken, Norwegian Barents sea

    Get PDF
    The continental margins of the Arctic Ocean basin contain methane seeps, where transient fluxes of seafloor methane are released due to the thermal dissociation of gas hydrates. An increase in shallow methane seeps identified over the past decade, potentially due to enhanced warming of the Arctic Ocean bottom water and associated destabilization of hydrate structure. Biological communities associated with methane release east of Svalbard in the Barents Sea (Storbanken Crater site, 76° 46.7′N, 35° 43.5′E, depths between 120 m–300 m depths) were investigated using towed camera imagery and ship-based platforms during a 2017 CAGE17-2 cruise on the RV Helmer Hanssen. We analyzed relationships among methane flux data, seafloor habitat characteristics, and biological community structure (i.e., presence and distribution of megafauna and expression of microbial mats) from a total of 14 surveys (6827 images and 40 multicore sediment cores) within the Storbanken Crater area and compared it to 2015 data. Unlike seep expressions at deeper sites (∼1200 m) in the Norwegian margin region, no seep-endemic, chemosynthetic-associated megafaunal species were observed at the shallow surveyed sites and all sites hosted similarly diverse communities of non-seep species, including commercially important fish and crustaceans. Methane concentrations did not markedly differ between the crater and non-crater sites. Rates of methane gas advection through sediments (in the form of flares) were relatively low and concentration of methane was even lower in porewater samples at the crater site. We present the first evidence of methane flare flux and intermittent microbial mat distribution with associated folliculinid ciliates, which suggests a long history of methane emissions and a transient seep environment in spatial and temporal flux. Together, this study presents a critical baseline on the temporal release of arctic methane and benthic biological communities to initiate temporal studies that identify future changes and predict the impact of climate chang

    Are Keratoacanthomas Variants of Squamous Cell Carcinomas? A Comparison of Chromosomal Aberrations by Comparative Genomic Hybridization

    Get PDF
    Keratoacanthoma (KA) is a benign keratinocytic neoplasm that usually presents as a solitary nodule on sun-exposed areas, develops within 6–8 weeks and spontaneously regresses after 3–6 months. KAs share features such as infiltration and cytological atypia with squamous cell carcinomas (SCCs). Furthermore, there are reports of KAs that have metastasized, invoking the question of whether or not KA is a variant of SCC. To date no reported criteria are sensitive enough to discriminate reliably between KA and SCC, and consequently there is a clinical need for discriminating markers. We screened fresh frozen material from 132 KAs and 37 SCCs for gross chromosomal aberrations by using comparative genomic hybridization (CGH). Forty-nine KAs (37.1%) and 31 SCCs (83.7%) showed genomic aberrations, indicating a higher degree of chromosomal instability in SCCs. Gains of chromosomal material from 1p, 14q, 16q, 20q, and losses from 4p were seen significantly more frequently in SCCs compared with KAs (P-values 0.0033, 0.0198, 0.0301, 0.0017, and 0.0070), whereas loss from 9p was seen significantly more frequently in KAs (P-value 0.0434). The patterns of recurrent aberrations were also different in the two types of neoplasms, pointing to different genetic mechanisms involved in their developments

    Demographic history has shaped the strongly differentiated corkwing wrasse populations in Northern Europe

    Get PDF
    Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60 km) in the North Sea‐Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post‐glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes

    Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor

    Get PDF
    Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.authorsversionPeer reviewe

    Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate

    Get PDF
    Several lines of evidence suggest that genome-wide association studies (GWAS) have the potential to explain more of the “missing heritability” of common complex phenotypes. However, reliable methods to identify a larger proportion of single nucleotide polymorphisms (SNPs) that impact disease risk are currently lacking. Here, we use a genetic pleiotropy-informed conditional false discovery rate (FDR) method on GWAS summary statistics data to identify new loci associated with schizophrenia (SCZ) and bipolar disorders (BD), two highly heritable disorders with significant missing heritability. Epidemiological and clinical evidence suggest similar disease characteristics and overlapping genes between SCZ and BD. Here, we computed conditional Q–Q curves of data from the Psychiatric Genome Consortium (SCZ; n = 9,379 cases and n = 7,736 controls; BD: n = 6,990 cases and n = 4,820 controls) to show enrichment of SNPs associated with SCZ as a function of association with BD and vice versawith a corresponding reduction in FDR. Applying the conditional FDR method, we identified 58 loci associated with SCZ and 35 loci associated with BD below the conditional FDR level of 0.05. Of these, 14 loci were associated with both SCZ and BD (conjunction FDR). Together, these findings show the feasibility of genetic pleiotropy-informed methods to improve gene discovery in SCZ and BD and indicate overlapping genetic mechanisms between these two disorders

    DNA Methylation and Gene Expression Changes in Monozygotic Twins Discordant for Psoriasis: Identification of Epigenetically Dysregulated Genes

    Get PDF
    Monozygotic (MZ) twins do not show complete concordance for many complex diseases; for example, discordance rates for autoimmune diseases are 20%–80%. MZ discordance indicates a role for epigenetic or environmental factors in disease. We used MZ twins discordant for psoriasis to search for genome-wide differences in DNA methylation and gene expression in CD4+ and CD8+ cells using Illumina's HumanMethylation27 and HT-12 expression assays, respectively. Analysis of these data revealed no differentially methylated or expressed genes between co-twins when analyzed separately, although we observed a substantial amount of small differences. However, combined analysis of DNA methylation and gene expression identified genes where differences in DNA methylation between unaffected and affected twins were correlated with differences in gene expression. Several of the top-ranked genes according to significance of the correlation in CD4+ cells are known to be associated with psoriasis. Further, gene ontology (GO) analysis revealed enrichment of biological processes associated with the immune response and clustering of genes in a biological pathway comprising cytokines and chemokines. These data suggest that DNA methylation is involved in an epigenetic dysregulation of biological pathways involved in the pathogenesis of psoriasis. This is the first study based on data from MZ twins discordant for psoriasis to detect epigenetic alterations that potentially contribute to development of the disease

    Gene-Based Analysis of Regionally Enriched Cortical Genes in GWAS Data Sets of Cognitive Traits and Psychiatric Disorders

    Get PDF
    Background: Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes in three different cortical areas (frontomedial, temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n = 3 samples) and bipolar affective disorder (BP) (n = 3 samples), to which cognitive impairment is linked. Principal Findings: At the single gene level, the temporal cortex enriched gene RAR-related orphan receptor B (RORB) showed the strongest overall association, namely to a test of verbal intelligence (Vocabulary, P = 7.7E-04). We also applied gene set enrichment analysis (GSEA) to test the candidate genes, as gene sets, for enrichment of association signal in the NCNG GWAS and in GWASs of BP and of SCZ. We found that genes differentially expressed in the temporal cortex showed a significant enrichment of association signal in a test measure of non-verbal intelligence (Reasoning) in the NCNG sample. Conclusion: Our gene-based approach suggests that RORB could be involved in verbal intelligence differences, while the genes enriched in the temporal cortex might be important to intellectual functions as measured by a test of reasoning in the healthy population. These findings warrant further replication in independent samples on cognitive traits
    corecore