56 research outputs found

    Transmembrane Protein Docking with JabberDock

    Get PDF
    Transmembrane proteins act as an intermediary for a broad range of biological process. Making up 20% to 30% of the proteome, their ubiquitous nature has resulted in them comprising 50% of all targets in drug design. Despite their importance, they make up only 4% of all structures in the PDB database, primarily owing to difficulties associated with isolating and characterizing them. Membrane protein docking algorithms could help to fill this knowledge gap, yet only few exist. Moreover, these existing methods achieve success rates lower than the current best soluble proteins docking software. We present and test a pipeline using our software, JabberDock, to dock membrane proteins. JabberDock docks shapes representative of membrane protein structure and dynamics in their biphasic environment. We verify JabberDock’s ability to yield accurate predictions by applying it to a benchmark of 20 transmembrane dimers, returning a success rate of 75.0%. This makes our software very competitive among available membrane protein–protein docking tools

    Identification of Graphene Dispersion Agents through Molecular Fingerprints

    Get PDF
    The scalable production and dispersion of 2D materials, like graphene, is critical to enable their use in commercial applications. While liquid exfoliation is commonly used, solvents such as N-methyl-pyrrolidone (NMP) are toxic and difficult to scale up. However, the search for alternative solvents is hindered by the intimidating size of the chemical space. Here, we present a computational pipeline informing the identification of effective exfoliation agents. Classical molecular dynamics simulations provide statistical sampling of interactions, enabling the identification of key molecular descriptors for a successful solvent. The statistically representative configurations from these simulations, studied with quantum mechanical calculations, allow us to gain insights onto the chemophysical interactions at the surface–solvent interface. As an exemplar, through this pipeline we identify a potential graphene exfoliation agent 2-pyrrolidone and experimentally demonstrate it to be as effective as NMP. Our workflow can be generalized to any 2D material and solvent system, enabling the screening of a wide range of compounds and solvents to identify safer and cheaper means of producing dispersions

    Ca2+-dependent lipid preferences shape synaptotagmin-1 C2A and C2B dynamics: Insights from experiments and simulations

    Get PDF
    Signal transmission between neurons requires exocytosis of neurotransmitters from the lumen of synaptic vesicles into the synaptic cleft. Following an influx of Ca , this process is facilitated by the Ca sensor synaptotagmin-1. The underlying mechanisms involve electrostatic and hydrophobic interactions tuning the lipid preferences of the two C2 domains of synaptotagmin-1; however, the details are still controversially discussed. We, therefore, follow a multidisciplinary approach and characterize lipid and membrane binding of the isolated C2A and C2B domains. We first target interactions with individual lipid species, and then study interactions with model membranes of liposomes. Finally, we perform molecular dynamics simulations to unravel differences in membrane binding. We found that both C2 domains, as a response to Ca , insert into the lipid membrane; however, C2A adopts a more perpendicular orientation while C2B remains parallel. These findings allow us to propose a mechanism for synaptotagmin-1 during membrane fusion. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

    Mass Photometry of Membrane Proteins

    Get PDF
    Integral membrane proteins (IMPs) are biologically highly significant but challenging to study because they require maintaining a cellular lipid-like environment. Here, we explore the application of mass photometry (MP) to IMPs and membrane-mimetic systems at the single-particle level. We apply MP to amphipathic vehicles, such as detergents and amphipols, as well as to lipid and native nanodiscs, characterizing the particle size, sample purity, and heterogeneity. Using methods established for cryogenic electron microscopy, we eliminate detergent background, enabling high-resolution studies of membrane-protein structure and interactions. We find evidence that, when extracted from native membranes using native styrene-maleic acid nanodiscs, the potassium channel KcsA is present as a dimer of tetramers—in contrast to results obtained using detergent purification. Finally, using lipid nanodiscs, we show that MP can help distinguish between functional and non-functional nanodisc assemblies, as well as determine the critical factors for lipid nanodisc formation

    Outcome of the First wwPDB Hybrid / Integrative Methods Task Force Workshop

    Get PDF
    Structures of biomolecular systems are increasingly computed by integrative modeling that relies on varied types of experimental data and theoretical information. We describe here the proceedings and conclusions from the first wwPDB Hybrid/Integrative Methods Task Force Workshop held at the European Bioinformatics Institute in Hinxton, UK, on October 6 and 7, 2014. At the workshop, experts in various experimental fields of structural biology, experts in integrative modeling and visualization, and experts in data archiving addressed a series of questions central to the future of structural biology. How should integrative models be represented? How should the data and integrative models be validated? What data should be archived? How should the data and models be archived? What information should accompany the publication of integrative models
    • …
    corecore