79 research outputs found

    Molecular cloning of CoA synthase - The missing link in CoA biosynthesis

    Get PDF
    Coenzyme A functions as a carrier of acetyl and acyl groups in living cells and is essential for numerous biosynthetic, energy-yielding, and degradative metabolic pathways. There are five enzymatic steps in CoA biosynthesis. To date, molecular cloning of enzymes involved in the CoA biosynthetic pathway in mammals has been only reported for pantothenate kinase. In this study, we present cDNA cloning and functional characterization of CoA synthase. It has an open reading frame of 563 aa and encodes a protein of similar to60 kDa. Sequence alignments suggested that the protein possesses both phosphopantetheine adenylyltransferase and dephospho-CoA kinase domains. Biochemical assays using wild type recombinant protein confirmed the gene product indeed contained both these enzymatic activities. The presence of intrinsic phosphopantetheine adenylyltransferase activity was further confirmed by site-directed mutagenesis. Therefore, this study describes the first cloning and characterization of a mammalian CoA synthase and confirms this is a bifunctional enzyme containing the last two components of CoA biosynthesis

    SpeB of Streptococcus pyogenes Differentially Modulates Antibacterial and Receptor Activating Properties of Human Chemokines

    Get PDF
    BACKGROUND: CXC chemokines are induced by inflammatory stimuli in epithelial cells and some, like MIG/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11, are antibacterial for Streptococcus pyogenes. METHODOLOGY/PRINCIPAL FINDINGS: SpeB from S. pyogenes degrades a wide range of chemokines (i.e. IP10/CXCL10, I-TAC/CXCL11, PF4/CXCL4, GROalpha/CXCL1, GRObeta/CXCL2, GROgamma/CXCL3, ENA78/CXCL5, GCP-2/CXCL6, NAP-2/CXCL7, SDF-1/CXCL12, BCA-1/CXCL13, BRAK/CXCL14, SRPSOX/CXCL16, MIP-3alpha/CCL20, Lymphotactin/XCL1, and Fractalkine/CX3CL1), has no activity on IL-8/CXCL8 and RANTES/CCL5, partly degrades SRPSOX/CXCL16 and MIP-3alpha/CCL20, and releases a 6 kDa CXCL9 fragment. CXCL10 and CXCL11 loose receptor activating and antibacterial activities, while the CXCL9 fragment does not activate the receptor CXCR3 but retains its antibacterial activity. CONCLUSIONS/SIGNIFICANCE: SpeB destroys most of the signaling and antibacterial properties of chemokines expressed by an inflamed epithelium. The exception is CXCL9 that preserves its antibacterial activity after hydrolysis, emphasizing its role as a major antimicrobial on inflamed epithelium

    Plasma and cellular fibronectin: distinct and independent functions during tissue repair

    Get PDF
    Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes

    Enhanced hydrogen production from thermochemical processes

    Get PDF
    To alleviate the pressing problem of greenhouse gas emissions, the development and deployment of sustainable energy technologies is necessary. One potentially viable approach for replacing fossil fuels is the development of a H2 economy. Not only can H2 be used to produce heat and electricity, it is also utilised in ammonia synthesis and hydrocracking. H2 is traditionally generated from thermochemical processes such as steam reforming of hydrocarbons and the water-gas-shift (WGS) reaction. However, these processes suffer from low H2 yields owing to their reversible nature. Removing H2 with membranes and/or extracting CO2 with solid sorbents in situ can overcome these issues by shifting the component equilibrium towards enhanced H2 production via Le Chatelier's principle. This can potentially result in reduced energy consumption, smaller reactor sizes and, therefore, lower capital costs. In light of this, a significant amount of work has been conducted over the past few decades to refine these processes through the development of novel materials and complex models. Here, we critically review the most recent developments in these studies, identify possible research gaps, and offer recommendations for future research
    • …
    corecore