180 research outputs found

    Candidate regions on titan as promising landing sites for future in situ missions

    Get PDF
    The highly successful and still on-going Cassini-Huygens mission to the Saturnian system points to the need for a return mission, with both remote and in situ instrumentation. The surface of Saturn’s moon Titan, hosts a complex environment in which many processes occur shaping its landscape. Several of its geological features resemble terrestrial ones, albeit constructed from different material and reflecting the interiorsurface-atmosphere exchanges. The resulting observed morphotectonic features and cryovolcanic candidate regions could benefit from further extensive exploration by a return mission that would focus on these aspects with adapted state-of-the-art instrumentation affording higher spectral and spatial resolution and in situ capabilities. We suggest that some features on Titan are more promising candidate locations for future landing and we present the case for Tui Regio, Hotei Regio and Sotra Patera as to why they could provide a wealth of new scientific results

    Potentially active regions on Titan: New processing of Cassini/VIMS data

    Get PDF
    The Cassini Visual and Infrared Mapping Spectrometer (VIMS) obtained data of Titan's surface from flybys performed during the last seven years. In the 0.8-5.2 µm range, these spectro-imaging data showed that the surface consists of a multivariable geological terrain hosting complex geological processes. The data from the seven narrow methane spectral "windows" centered at 0.93, 1.08, 1.27, 1.59, 2.03, 2.8 and 5 µm provide some information on the lower atmospheric context and the surface parameters that we want to determine. Atmospheric scattering and absorption need to be clearly evaluated before we can extract the surface properties. We apply here a statistical method [1, 2] and a radiative transfer method [3, 1] on three potentially "active" regions on Titan, i.e. regions possibly subject to change over time (in brightness and/or in color etc) [4]: Tui Regio (20°S, 130°W) [5], a 1,500-km long flow-like figure, Hotei Regio (26°S, 78°W) [6], a 700-km wide volcanic-like terrain, and Sotra Facula (15°S, 42°W) [7], a 235-km in diameter area. With our method of Principal Component Analysis (PCA) we have managed to isolate specific regions of distinct and diverse chemical composition. We have tested this method on the previously studied Sinlap crater [8], delimitating compositional heterogeneous areas compatible with the published conclusions by Le Mouélic et al. (2008). Our follow-up method focuses on retrieving the surface albedo of the three areas and of the surrounding terrains with different spectral response by applying a radiative transfer (RT) code. We have used as input most of the Cassini HASI and DISR measurements, as well as new methane absorption coefficients [9], which are important to evaluate the atmospheric contribution and to allow us to better constrain the real surface alterations, by comparing the spectra of these regions. By superposing these results onto the PCA maps, we can correlate composition and morphology. As a test case, we used our RT code to verify the varying brightness of Hotei Regio reported by other investigators based on models lacking proper simulation of the atmospheric absorption [10]. Even though we have used exactly the same dataset, we did not detect any significant surface albedo variations over time; this led us to revise the definition of "active" regions: even if these regions have not visually changed over the course of the Cassini mission, the determination of the chemical composition and the correlation with the morphological structures [11] observed in these areas do not rule out that past and/or ongoing cryovolcanic processes are still a possible interpretation. [1] Solomonidou, A. et al. (2011). Potentially active regions on Titan: New processing of Cassini/VIMS data. In preparation. [2] Stephan, K. et al. (2008). Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data. Planetary and Space Science 56, 406-419. [3] Hirtzig, M. et al. (2011). Applications of a new methane linelist to Cassini/VIMS spectra of Titan in the 1.28-5.2 µm range . In preparation. [4] Wall, s. D. et al. (2009). Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Journal of Geophysical Research 36, L04203, [5] Barnes, J.W. et al. (2006). Cassini observations of flow-like features in western Tui Regio, Titan. Geophysical Research Letters 33, L16204. [6] Soderblom, L.A. et al. (2009). The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR. Icarus 204, 610-618. [7] Lopes, R.M.C. et al. (2010). Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus 205, 540-558. [8] Le Mouélic et al. (2008). Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. Journal of Geophysical Research 113, E04003. [9] Campargue, A. et al. (2011). An empirical line list for methane at 80 K and 296 K in the 1.26-1.71 µm region for planetary investigations. Application to Titan. Icarus. Submitted. [10] Nelson, R. et al (2009). Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus 199, 429-441. [11] Solomonidou, A. et al. (2011). Possible morphotectonic features on Titan and their origin. Planetary and Space Science. Submitted

    Overview of the coordinated ground-based observations of Titan during the Huygens mission

    Get PDF
    Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs. These observations consisted of three different categories: (1) radio telescope tracking of the Huygens signal at 2040 MHz, (2) observations of the atmosphere and surface of Titan, and (3) attempts to observe radiation emitted during the Huygens Probe entry into Titan's atmosphere. The Probe radio signal was successfully acquired by a network of terrestrial telescopes, recovering a vertical profile of wind speed in Titan's atmosphere from 140 km altitude down to the surface. Ground-based observations brought new information on atmosphere and surface properties of the largest Satumian moon. No positive detection of phenomena associated with the Probe entry was reported. This paper reviews all these measurements and highlights the achieved results. The ground-based observations, both radio and optical, are of fundamental imnortance for the interpretatinn of results from the Huygens mission

    Étude de Titan dans l'infrarouge proche par spectro-imagerie couplée a l'optique adaptative.

    No full text
    Titan, Saturn's main satellite, is still a mysterious object, despite the arrival of Cassini/Huygens. Yet we can rely on Adaptive Optics: my work presented herein is based on the 1998-2005 infrared data acquired with imagery (PUEO/CFHT, NACO/VLT), spectroscopy (NACO) or Integral Field Spectrometry (OASIS/WHT). In the 0. 8-2. 0µm spectral range, both the atmosphere and the surface of Titan can be probed down to, in or out of five methane windows. Voyager revealed the asymmetry splitting Titan's atmosphere in two, North and South, because of a local enhancement of aerosols in the winter hemisphere. We could monitor the inversion of this asymmetry, when Titan entered into Southern summer : since 2002, the Northern limb is the brightest. We also describe other subtle features, such as the condensation of aerosols at 80km of altitude during Titan's night; or the complex meteorological system, confined within the 70th parallel, between 18 and 83km, probably made of small deforming clouds, but we still ignore their true nature or origin. We studied Titan's surface by constructing maps at 1. 28, 1. 6 and 2. 0µm, with a stunning similarity to HST or Cassini ones. We also tried to identify the chemical composition of the bright and dark features by means of differential spectroscopy ; water ice is a good candidate as the main constituent of the surface, with either an excess of bright methane/ethane ices, or an excess of dark hydrocarbon liquids. We do not detect any specular reflection, ruling out the existence of large bodies of liquid on the surface : how about a permafrost of liquid ethane within solid water ice as the replenishing source of the atmospheric methaneMalgré l'arrivée de Cassini/Huygens dans le système Saturnien, Titan reste encore bien mystérieux. C'est là que peut intervenir l'Optique Adaptative: les travaux présentés ici reposent sur l'étude des données 1998-2005 acquises en infrarouge proche, par imagerie (PUEO/CFHT, NACO/VLT), spectroscopie (NACO) et spectroscopie à intégrale de champ (OASIS/WHT). La gamme spectrale couverte permet de sonder la basse atmosphère de Titan, mais aussi d'atteindre sa surface dans cinq fenêtres du méthane, entre 0,8 et 2,0µm. Depuis Voyager, l'atmosphère de Titan est connue pour son asymétrie Nord-Sud, due à un excès d'aérosols dans l'hémisphère d'hiver. Nous avons suivi l'inversion de cette asymétrie, lorsqu'a débuté l'été Sud, estimant la transition vers 2002 : le limbe Nord prédomine désormais. D'autres motifs plus subtils sont également décrits, comme la condensation nocturne des aérosols, vers 80km d'altitude; ou encore le système météorologique en constante déformation en deçà du 70eme parallèle, localisé entre 18 et 83km, probablement constitué de nuages, mais dont nous ignorons la nature et l'origine. Quant à la surface de Titan, des cartes ont été réalisées à 1,28, 1,6 et 2,0µm, avec une excellente similitude par rapport aux cartes HST ou Cassini. Nous avons tenté d'identifier la composition chimique des régions claires et sombres, par spectroscopie différentielle : le constituant commun semble être la glace d'eau, avec un excès local de glaces de méthane/éthane brillantes, ou d'hydrocarbures liquides sombres. Puisque nos images ne révèlent aucune réflexion spéculaire, donc aucune étendue liquide, les zones sombres cacheraient-elles en sous-sol un réservoir de méthane

    Étude de Titan dans l'infrarouge proche par spectro-imagerie couplée a l'optique adaptative.

    No full text
    Titan, Saturn's main satellite, is still a mysterious object, despite the arrival of Cassini/Huygens. Yet we can rely on Adaptive Optics: my work presented herein is based on the 1998-2005 infrared data acquired with imagery (PUEO/CFHT, NACO/VLT), spectroscopy (NACO) or Integral Field Spectrometry (OASIS/WHT). In the 0. 8-2. 0µm spectral range, both the atmosphere and the surface of Titan can be probed down to, in or out of five methane windows. Voyager revealed the asymmetry splitting Titan's atmosphere in two, North and South, because of a local enhancement of aerosols in the winter hemisphere. We could monitor the inversion of this asymmetry, when Titan entered into Southern summer : since 2002, the Northern limb is the brightest. We also describe other subtle features, such as the condensation of aerosols at 80km of altitude during Titan's night; or the complex meteorological system, confined within the 70th parallel, between 18 and 83km, probably made of small deforming clouds, but we still ignore their true nature or origin. We studied Titan's surface by constructing maps at 1. 28, 1. 6 and 2. 0µm, with a stunning similarity to HST or Cassini ones. We also tried to identify the chemical composition of the bright and dark features by means of differential spectroscopy ; water ice is a good candidate as the main constituent of the surface, with either an excess of bright methane/ethane ices, or an excess of dark hydrocarbon liquids. We do not detect any specular reflection, ruling out the existence of large bodies of liquid on the surface : how about a permafrost of liquid ethane within solid water ice as the replenishing source of the atmospheric methaneMalgré l'arrivée de Cassini/Huygens dans le système Saturnien, Titan reste encore bien mystérieux. C'est là que peut intervenir l'Optique Adaptative: les travaux présentés ici reposent sur l'étude des données 1998-2005 acquises en infrarouge proche, par imagerie (PUEO/CFHT, NACO/VLT), spectroscopie (NACO) et spectroscopie à intégrale de champ (OASIS/WHT). La gamme spectrale couverte permet de sonder la basse atmosphère de Titan, mais aussi d'atteindre sa surface dans cinq fenêtres du méthane, entre 0,8 et 2,0µm. Depuis Voyager, l'atmosphère de Titan est connue pour son asymétrie Nord-Sud, due à un excès d'aérosols dans l'hémisphère d'hiver. Nous avons suivi l'inversion de cette asymétrie, lorsqu'a débuté l'été Sud, estimant la transition vers 2002 : le limbe Nord prédomine désormais. D'autres motifs plus subtils sont également décrits, comme la condensation nocturne des aérosols, vers 80km d'altitude; ou encore le système météorologique en constante déformation en deçà du 70eme parallèle, localisé entre 18 et 83km, probablement constitué de nuages, mais dont nous ignorons la nature et l'origine. Quant à la surface de Titan, des cartes ont été réalisées à 1,28, 1,6 et 2,0µm, avec une excellente similitude par rapport aux cartes HST ou Cassini. Nous avons tenté d'identifier la composition chimique des régions claires et sombres, par spectroscopie différentielle : le constituant commun semble être la glace d'eau, avec un excès local de glaces de méthane/éthane brillantes, ou d'hydrocarbures liquides sombres. Puisque nos images ne révèlent aucune réflexion spéculaire, donc aucune étendue liquide, les zones sombres cacheraient-elles en sous-sol un réservoir de méthane

    Étude de Titan dans l'infrarouge proche par spectro-imagerie couplée a l'optique adaptative.

    No full text
    Titan, Saturn's main satellite, is still a mysterious object, despite the arrival of Cassini/Huygens. Yet we can rely on Adaptive Optics: my work presented herein is based on the 1998-2005 infrared data acquired with imagery (PUEO/CFHT, NACO/VLT), spectroscopy (NACO) or Integral Field Spectrometry (OASIS/WHT). In the 0. 8-2. 0µm spectral range, both the atmosphere and the surface of Titan can be probed down to, in or out of five methane windows. Voyager revealed the asymmetry splitting Titan's atmosphere in two, North and South, because of a local enhancement of aerosols in the winter hemisphere. We could monitor the inversion of this asymmetry, when Titan entered into Southern summer : since 2002, the Northern limb is the brightest. We also describe other subtle features, such as the condensation of aerosols at 80km of altitude during Titan's night; or the complex meteorological system, confined within the 70th parallel, between 18 and 83km, probably made of small deforming clouds, but we still ignore their true nature or origin. We studied Titan's surface by constructing maps at 1. 28, 1. 6 and 2. 0µm, with a stunning similarity to HST or Cassini ones. We also tried to identify the chemical composition of the bright and dark features by means of differential spectroscopy ; water ice is a good candidate as the main constituent of the surface, with either an excess of bright methane/ethane ices, or an excess of dark hydrocarbon liquids. We do not detect any specular reflection, ruling out the existence of large bodies of liquid on the surface : how about a permafrost of liquid ethane within solid water ice as the replenishing source of the atmospheric methaneMalgré l'arrivée de Cassini/Huygens dans le système Saturnien, Titan reste encore bien mystérieux. C'est là que peut intervenir l'Optique Adaptative: les travaux présentés ici reposent sur l'étude des données 1998-2005 acquises en infrarouge proche, par imagerie (PUEO/CFHT, NACO/VLT), spectroscopie (NACO) et spectroscopie à intégrale de champ (OASIS/WHT). La gamme spectrale couverte permet de sonder la basse atmosphère de Titan, mais aussi d'atteindre sa surface dans cinq fenêtres du méthane, entre 0,8 et 2,0µm. Depuis Voyager, l'atmosphère de Titan est connue pour son asymétrie Nord-Sud, due à un excès d'aérosols dans l'hémisphère d'hiver. Nous avons suivi l'inversion de cette asymétrie, lorsqu'a débuté l'été Sud, estimant la transition vers 2002 : le limbe Nord prédomine désormais. D'autres motifs plus subtils sont également décrits, comme la condensation nocturne des aérosols, vers 80km d'altitude; ou encore le système météorologique en constante déformation en deçà du 70eme parallèle, localisé entre 18 et 83km, probablement constitué de nuages, mais dont nous ignorons la nature et l'origine. Quant à la surface de Titan, des cartes ont été réalisées à 1,28, 1,6 et 2,0µm, avec une excellente similitude par rapport aux cartes HST ou Cassini. Nous avons tenté d'identifier la composition chimique des régions claires et sombres, par spectroscopie différentielle : le constituant commun semble être la glace d'eau, avec un excès local de glaces de méthane/éthane brillantes, ou d'hydrocarbures liquides sombres. Puisque nos images ne révèlent aucune réflexion spéculaire, donc aucune étendue liquide, les zones sombres cacheraient-elles en sous-sol un réservoir de méthane

    Cassini-Huygens results on Titan's surface

    No full text
    International audienceOur understanding of Titan, Saturn's largest satellite, has recently been considerably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In particular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface

    Etude de Titan dans l'infrarouge proche par spectro-imagerie couplée à l'optique adaptative

    No full text
    Malgré l'arrivée de Cassini/Huygens dans le système Saturnien, Titan reste encore bien mystérieux. C'est là que peut intervenir l'Optique Adaptative: les travaux présentés ici reposent sur l'étude des données 1998-2005 acquises en infrarouge proche, par imagerie (PUEO/CFHT, NACO/VLT), spectroscopie (NACO) et spectroscopie à intégrale de champ (OASIS/WHT). La gamme spectrale couverte permet de sonder la basse atmosphère de Titan, mais aussi d'atteindre sa surface dans cinq fenêtres du méthane, entre 0,8 et 2,0 m.Depuis Voyager, l'atmosphère de Titan est connue pour son asymétrie Nord-Sud, due à un excès d'aérosols dans l'hémisphère d'hiver. Nous avons suivi l'inversion de cette asymétrie, lorsqu'a débuté l'été Sud, estimant la transition vers 2002 : le limbe Nord prédomine désormais. D'autres motifs plus subtils sont également décrits, comme la condensation nocturne des aérosols, vers 80km d'altitude; ou encore le système météorologique en constante déformation en deçà du 70eme parallèle, localisé entre 18 et 83km, probablement constitué de nuages, mais dont nous ignorons la nature et l'origine.Quant à la surface de Titan, des cartes ont été réalisées à 1,28, 1,6 et 2,0 m, avec une excellente similitude par rapport aux cartes HST ou Cassini. Nous avons tenté d'identifier la composition chimique des régions claires et sombres, par spectroscopie différentielle : le constituant commun semble être la glace d'eau, avec un excès local de glaces de méthane/éthane brillantes, ou d'hydrocarbures liquides sombres. Puisque nos images ne révèlent aucune réflexion spéculaire, donc aucune étendue liquide, les zones sombres cacheraient-elles en sous-sol un réservoir de méthane.Titan, Saturn's main satellite, is still a mysterious object, despite the arrival of Cassini/Huygens. Yet we can rely on Adaptive Optics: my work presented herein is based on the 1998-2005 infrared data acquired with imagery (PUEO/CFHT, NACO/VLT), spectroscopy (NACO) or Integral Field Spectrometry (OASIS/WHT). In the 0.8-2.0 m spectral range, both the atmosphere and the surface of Titan can be probed down to, in or out of five methane windows.Voyager revealed the asymmetry splitting Titan's atmosphere in two, North and South, because of a local enhancement of aerosols in the winter hemisphere. We could monitor the inversion of this asymmetry, when Titan entered into Southern summer : since 2002, the Northern limb is the brightest. We also describe other subtle features, such as the condensation of aerosols at 80km of altitude during Titan's night; or the complex meteorological system, confined within the 70th parallel, between 18 and 83km, probably made of small deforming clouds, but we still ignore their true nature or origin.We studied Titan's surface by constructing maps at 1.28, 1.6 and 2.0 m, with a stunning similarity to HST or Cassini ones. We also tried to identify the chemical composition of the bright and dark features by means of differential spectroscopy ; water ice is a good candidate as the main constituent of the surface, with either an excess of bright methane/ethane ices, or an excess of dark hydrocarbon liquids. We do not detect any specular reflection, ruling out the existence of large bodies of liquid on the surface : how about a permafrost of liquid ethane within solid water ice as the replenishing source of the atmospheric methane.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    A review of Titan’s atmospheric phenomena

    No full text
    International audienceSaturn's satellite Titan is a particularly interesting body in our solar system. It is the only satellite with a dense atmosphere, which is primarily made of nitrogen and methane. It harbours an intricate photochemistry, that populates the atmosphere with aerosols, but that should deplete irreversibly the methane. The observation that methane is not depleted led to the study of Titan's methane cycle, starting with its atmospheric part. The features that inhabit Titan's atmosphere can last for timescales varying from year to day. For instance, the reversal of the north-south asymmetry is linked to the 16-year seasonal cycle. Diurnal phenomena have also been observed, like a stratospheric haze enhancement or a possible tropospheric drizzle. Furthermore, clouds have been reported on Titan since 1993. From these first detections and up to now, with the recent inputs from the Cassini-Huygens mission, clouds have displayed a large range of shapes, altitudes, and natures, from the flocky tropospheric clouds at the south pole to the stratiform ones in the northern stratosphere. It is still difficult to compose a clear picture of the physical processes governing these phenomena, even M. Hirtzig (B) LATMOS, IPSL
    corecore