114 research outputs found

    Igκ allelic inclusion is a consequence of receptor editing

    Get PDF
    The discovery of lymphocytes bearing two light chains in mice carrying self-reactive antibody transgenes has challenged the “one lymphocyte–one antibody” rule. However, the extent and nature of allelically included cells in normal mice is unknown. We show that 10% of mature B cells coexpress both Igκ alleles. These cells are not the result of failure in allelic exclusion per se, but arise through receptor editing. We find that under physiological conditions, editing occurs both by deletion and by inclusion with equal probability. In addition, we demonstrate that B lymphocytes carrying two B-cell receptors are recruited to germinal center reactions, and thus fully participate in humoral immune responses. Our data measure the scope of allelic inclusion and provide a mechanism whereby autoreactive B cells might “escape” central tolerance

    Systemic Administration of Antiretrovirals Prior to Exposure Prevents Rectal and Intravenous HIV-1 Transmission in Humanized BLT Mice

    Get PDF
    Successful antiretroviral pre-exposure prophylaxis (PrEP) for mucosal and intravenous HIV-1 transmission could reduce new infections among targeted high-risk populations including discordant couples, injection drug users, high-risk women and men who have sex with men. Targeted antiretroviral PrEP could be particularly effective at slowing the spread of HIV-1 if a single antiretroviral combination were found to be broadly protective across multiple routes of transmission. Therefore, we designed our in vivo preclinical study to systematically investigate whether rectal and intravenous HIV-1 transmission can be blocked by antiretrovirals administered systemically prior to HIV-1 exposure. We performed these studies using a highly relevant in vivo model of mucosal HIV-1 transmission, humanized Bone marrow/Liver/Thymus mice (BLT). BLT mice are susceptible to HIV-1 infection via three major physiological routes of viral transmission: vaginal, rectal and intravenous. Our results show that BLT mice given systemic antiretroviral PrEP are efficiently protected from HIV-1 infection regardless of the route of exposure. Specifically, systemic antiretroviral PrEP with emtricitabine and tenofovir disoproxil fumarate prevented both rectal (Chi square = 8.6, df = 1, p = 0.003) and intravenous (Chi square = 13, df = 1, p = 0.0003) HIV-1 transmission. Our results indicate that antiretroviral PrEP has the potential to be broadly effective at preventing new rectal or intravenous HIV transmissions in targeted high risk individuals. These in vivo preclinical findings provide strong experimental evidence supporting the potential clinical implementation of antiretroviral based pre-exposure prophylactic measures to prevent the spread of HIV/AIDS

    PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer

    Get PDF
    Objectives: To characterize the safety, tolerability, and anti-tumor activity of cemiplimab as monotherapy or in combination with hypofractionated radiation therapy (hfRT) in patients with recurrent or metastatic cervical cancer. To determine the association between histology and programmed death-ligand 1 (PD-L1) expression. Methods: In non-randomized phase I expansion cohorts, patients (squamous or non-squamous histology) received cemiplimab 3 mg/kg intravenously every 2 weeks for 48 weeks, either alone (monotherapy cohort) or with hfRT during week 2 (combination cohort). Due to insufficient tissue material, PD-L1 protein expression was evaluated in commercially purchased samples and mRNA expression levels were analyzed from The Cancer Genome Atlas (TCGA). Results: Twenty patients enrolled in both cohorts in total; 10 had squamous histology. The most common adverse events of any grade were diarrhea, fatigue, and hypokalemia, occurring in 35%, 25%, and 25%, respectively. Objective response rate was 10% in each cohort; responders had squamous histology. Duration of response was 11.2 months and 6.4 months for the responder in the monotherapy and combination cohort, respectively. Irradiated lesions were not included in the response assessments. In separate archived specimens (N = 155), PD-L1 protein expression in tumor and immune cells was negative (<1%) more commonly in adenocarcinoma than in squamous tumors. PD-L1 mRNA levels were lower in adenocarcinoma than squamous cell tumors (1.2 vs 5.0 mean transcripts per million, respectively) in TCGA. Conclusions: Cemiplimab has activity in cervical squamous cell carcinoma. The phase I results, combined with results from other anti-PD-1 trials in cervical cancer and our biomarker analyses have informed the design of the ongoing phase III trial, with the primary overall survival hierarchical analyses being done first in patients with squamous histology

    The Bulge Metallicity Distribution from the APOGEE Survey

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) provides spectroscopic information of regions of the inner Milky Way, which are inaccessible to optical surveys. We present the first large study of the metallicity distribution of the innermost Galactic regions based on high-quality measurements for 7545 red giant stars within 4.5 kpc of the Galactic center, with the goal to shed light on the structure and origin of the Galactic bulge. Stellar metallicities are found, through multiple Gaussian decompositions, to be distributed in several components, which is indicative of the presence of various stellar populations such as the bar or the thin and the thick disks. Super-solar ([Fe/H] = +0.32) and solar ([Fe/H] = +0.00) metallicity components, tentatively associated with the thin disk and the Galactic bar, respectively, seem to be major contributors near the midplane. A solar-metallicity component extends outwards in the midplane but is not observed in the innermost regions. The central regions (within 3 kpc of the Galactic center) reveal, on the other hand, the presence of a significant metal-poor population ([Fe/H] = −0.46), tentatively associated with the thick disk, which becomes the dominant component far from the midplane (Z+0.75| Z| \geqslant +0.75 kpc). Varying contributions from these different components produce a transition region at +0.5 kpc Z +1.0kpc\leqslant \,| Z| \,\leqslant \ +1.0\,\mathrm{kpc}, characterized by a significant vertical metallicity gradient

    Final Targeting Strategy for the SDSS-IV APOGEE-2N Survey

    Full text link
    APOGEE-2 is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with the goal of producing a chemo-dynamical mapping of the Milky Way Galaxy. The targeting for APOGEE-2 is complex and has evolved with time. In this paper, we present the updates and additions to the initial targeting strategy for APOGEE-2N presented in Zasowski et al. (2017). These modifications come in two implementation modes: (i) "Ancillary Science Programs" competitively awarded to SDSS-IV PIs through proposal calls in 2015 and 2017 for the pursuit of new scientific avenues outside the main survey, and (ii) an effective 1.5-year expansion of the survey, known as the Bright Time Extension, made possible through accrued efficiency gains over the first years of the APOGEE-2N project. For the 23 distinct ancillary programs, we provide descriptions of the scientific aims, target selection, and how to identify these targets within the APOGEE-2 sample. The Bright Time Extension permitted changes to the main survey strategy, the inclusion of new programs in response to scientific discoveries or to exploit major new datasets not available at the outset of the survey design, and expansions of existing programs to enhance their scientific success and reach. After describing the motivations, implementation, and assessment of these programs, we also leave a summary of lessons learned from nearly a decade of APOGEE-1 and APOGEE-2 survey operations. A companion paper, Santana et al. (submitted), provides a complementary presentation of targeting modifications relevant to APOGEE-2 operations in the Southern Hemisphere.Comment: 59 pages; 11 Figures; 7 Tables; 2 Appendices; Submitted to Journal and Under Review; Posting to accompany papers using the SDSS-IV/APOGEE-2 Data Release 17 scheduled for December 202

    PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma

    Get PDF
    BACKGROUNDNo systemic therapies have been approved for the treatment of advanced cutaneous squamous-cell carcinoma. This cancer may be responsive to immune therapy, because the mutation burden of the tumor is high and the disease risk is strongly associated with immunosuppression. In the dose-escalation portion of the phase 1 study of cemiplimab, a deep and durable response was observed in a patient with metastatic cutaneous squamous-cell carcinoma.METHODSWe report the results of the phase 1 study of cemiplimab for expansion cohorts of patients with locally advanced or metastatic cutaneous squamous-cell carcinoma, as well as the results of the pivotal phase 2 study for a cohort of patients with metastatic disease (metastatic-disease cohort). In both studies, the patients received an intravenous dose of cemiplimab (3 mg per kilogram of body weight) every 2 weeks and were assessed for a response every 8 weeks. In the phase 2 study, the primary end point was the response rate, as assessed by independent central review.RESULTSIn the expansion cohorts of the phase 1 study, a response to cemiplimab was observed in 13 of 26 patients (50%; 95% confidence interval [CI], 30 to 70). In the metastatic-disease cohort of the phase 2 study, a response was observed in 28 of 59 patients (47%; 95% CI, 34 to 61). The median follow-up was 7.9 months in the metastatic-disease cohort of the phase 2 study. Among the 28 patients who had a response, the duration of response exceeded 6 months in 57%, and 82% continued to have a response and to receive cemiplimab at the time of data cutoff. Adverse events that occurred in at least 15% of the patients in the metastatic-disease cohort of the phase 2 study were diarrhea, fatigue, nausea, constipation, and rash; 7% of the patients discontinued treatment because of an adverse event.CONCLUSIONSAmong patients with advanced cutaneous squamous-cell carcinoma, cemiplimab induced a response in approximately half the patients and was associated with adverse events that usually occur with immune checkpoint inhibitors

    Genome-Wide Association Study of White Blood Cell Count in 16,388 African Americans: the Continental Origins and Genetic Epidemiology Network (COGENT)

    Get PDF
    Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived “null” variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10−8). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS

    Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals

    Get PDF
    Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin
    corecore