294 research outputs found
An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Richter, M., Nebel, O., Maas, R., Mather, B., Nebel-Jacobsen, Y., Capitanio, F. A., Dick, H. J. B., & Cawood, P. A. An early cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 6(44), (2020): eabb4340, doi:10.1126/sciadv.abb4340.Earthâs upper mantle, as sampled by mid-ocean ridge basalts (MORBs) at oceanic spreading centers, has developed chemical and isotopic heterogeneity over billions of years through focused melt extraction and re-enrichment by recycled crustal components. Chemical and isotopic heterogeneity of MORB is dwarfed by the large compositional spectrum of lavas at convergent margins, identifying subduction zones as the major site for crustal recycling into and modification of the mantle. The fate of subduction-modified mantle and if this heterogeneity transmits into MORB chemistry remains elusive. Here, we investigate the origin of upper mantle chemical heterogeneity underneath the Western Gakkel Ridge region in the Arctic Ocean through MORB geochemistry and tectonic plate reconstruction. We find that seafloor lavas from the Western Gakkel Ridge region mirror geochemical signatures of an Early Cretaceous, paleo-subduction zone, and conclude that the upper mantle can preserve a long-lived, stationary geochemical memory of past geodynamic processes.O.N. was supported by the Australian Research Council (grant FT140101062). P.A.C. was supported by the Australian Research Council (grant FL160100168). H.J.B.D. was supported by the NSF (grants PLR 9912162, PLR 0327591, OCE 0930487, and OCE 1434452). M.R. was supported by a graduate scholarship of Monash University and the SEAE
The transcriptome of the salivary glands of the female western black-legged tick \u3cem\u3eIxodes pacificus\u3c/em\u3e (Acari: Ixodidae)
Sequencing of an Ixodes pacificus salivary gland cDNA library yielded 1068 sequences with an average undetermined nucleotide of 1.9% and an average length of 487 base pairs. Assembly of the expressed sequence tags yielded 557 contigs, 138 of which appear to code for secreted peptides or proteins based on translation of a putative signal peptide. Based on the BLASTX similarity of these contigs to 66 matches of Ixodes scapularis peptide sequences, only 58% sequence identity was found, indicating a rapid divergence of salivary proteins as observed previously for mosquito and triatomine bug salivary proteins. Here we report 106 mostly full-length sequences that clustered in 16 different families: Basic-tail proteins rich in lysine in the carboxy-terminal, Kunitz-containing proteins (monolaris, ixolaris and penthalaris families), proline-rich peptides, 5-, 9.4- and 18.7-kDa proteins of unknown functions, in addition to metalloproteases (class PIII-like) similar to reprolysins. We also have found a family of disintegrins, named ixodegrins that display homology to variabilin, a GPIIb/IIIa antagonist from the tick Dermacentor variabilis. In addition, we describe peptides (here named ixostatins) that display remarkable similarities to the cysteine-rich domain of ADAMST-4 (aggrecanase). Many molecules were assigned in the lipocalin family (histamine-binding proteins); others appear to be involved in oxidant metabolism, and still others were similar to ixodid proteins such as the anticomplement ISAC. We also identified for the first time a neuropeptide-like protein (nlp-31) with GGY repeats that may have antimicrobial activity. In addition, 16 novel proteins without significant similarities to other tick proteins and 37 housekeeping proteins that may be useful for phylogenetic studies are described. Some of these proteins may be useful for studying vascular biology or the immune system, for vaccine development, or as immunoreagents to detect prior exposure to ticks
Pearling and Pinching: Propagation of Rayleigh Instabilities
A new category of front propagation problems is proposed in which a spreading
instability evolves through a singular configuration before saturating. We
examine the nature of this front for the viscous Rayleigh instability of a
column of one fluid immersed in another, using the marginal stability criterion
to estimate the front velocity, front width, and the selected wavelength in
terms of the surface tension and viscosity contrast. Experiments are suggested
on systems that may display this phenomenon, including droplets elongated in
extensional flows, capillary bridges, liquid crystal tethers, and viscoelastic
fluids. The related problem of propagation in Rayleigh-like systems that do not
fission is also considered.Comment: Revtex, 7 pages, 4 ps figs, PR
CMB at 2x2 order: the dissipation of primordial acoustic waves and the observable part of the associated energy release
Silk damping of primordial small-scale perturbations in the photon-baryon
fluid due to diffusion of photons inevitably creates spectral distortions in
the CMB. With the proposed CMB experiment PIXIE it might become possible to
measure these distortions and thereby constrain the primordial power spectrum
at comoving wavenumbers 50 Mpc^{-1} < k < 10^4 Mpc^{-1}. Since primordial
fluctuations in the CMB on these scales are completely erased by Silk damping,
these distortions may provide the only way to shed light on otherwise
unobservable aspects of inflationary physics. A consistent treatment of the
primordial dissipation problem requires going to second order in perturbation
theory, while thermalization of these distortions necessitates consideration of
second order in Compton scattering energy transfer. Here we give a full 2x2
treatment for the creation and evolution of spectral distortions due to the
acoustic dissipation process, consistently including the effect of polarization
and photon mixing in the free streaming regime. We show that 1/3 of the total
energy (9/4 larger than previous estimates) stored in small-scale temperature
perturbations imprints observable spectral distortions, while the remaining 2/3
only raises the average CMB temperature, an effect that is unobservable. At
high redshift dissipation is mainly mediated through the quadrupole
anisotropies, while after recombination peculiar motions are most important.
During recombination the damping of the higher multipoles is also significant.
We compute the average distortion for several examples using CosmoTherm,
analyzing their dependence on parameters of the primordial power spectrum. For
one of the best fit WMAP7 cosmologies, with n_S=1.027 and n_run=-0.034, the
cooling of baryonic matter practically compensates the heating from acoustic
dissipation in the mu-era. (abridged)Comment: 40 pages, 17 figures, accepted by MNRA
Time and Encoding Effects in the Concealed Knowledge Test
Although the traditional âlie detectorâ test is used frequently in forensic contexts, it has (like most test of deception) some limitations. The concealed knowledge test (CKT) focuses on participantsâ recognition of privileged knowledge rather than lying per-se and has been studied extensively using a variety of measures. A âguiltyâ suspectâs interaction with and memory of crimescene items may vary. Furthermore, memory for crimescene items may diminish over time. The interaction of encoding quality and test delay on CKT efficiency has been previously implied, but not yet demonstrated. We used a response-time based CKT to detect concealed knowledge from shallow and deep study procedures after 10-min, 24-h, and 1-week delays. Results show that more elaborately encoded information afforded higher detection accuracy than poorly encoded items. Although classification accuracy following deep study was unaffected by delay, detection of poorly elaborated information was initially high, but compromised after 1Â week. Thus, choosing optimal test items requires considering both test delay and initial encoding level
Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics
Following the pioneering observations with COBE in the early 1990s, studies
of the cosmic microwave background (CMB) have focused on temperature and
polarization anisotropies. CMB spectral distortions - tiny departures of the
CMB energy spectrum from that of a perfect blackbody - provide a second,
independent probe of fundamental physics, with a reach deep into the primordial
Universe. The theoretical foundation of spectral distortions has seen major
advances in recent years, which highlight the immense potential of this
emerging field. Spectral distortions probe a fundamental property of the
Universe - its thermal history - thereby providing additional insight into
processes within the cosmological standard model (CSM) as well as new physics
beyond. Spectral distortions are an important tool for understanding inflation
and the nature of dark matter. They shed new light on the physics of
recombination and reionization, both prominent stages in the evolution of our
Universe, and furnish critical information on baryonic feedback processes, in
addition to probing primordial correlation functions at scales inaccessible to
other tracers. In principle the range of signals is vast: many orders of
magnitude of discovery space could be explored by detailed observations of the
CMB energy spectrum. Several CSM signals are predicted and provide clear
experimental targets, some of which are already observable with present-day
technology. Confirmation of these signals would extend the reach of the CSM by
orders of magnitude in physical scale as the Universe evolves from the initial
stages to its present form. The absence of these signals would pose a huge
theoretical challenge, immediately pointing to new physics.Comment: Astro2020 Science White Paper, 5 pages text, 13 pages in total, 3
Figures, minor update to reference
Signature Movements Lead to Efficient Search for Threatening Actions
The ability to find and evade fighting persons in a crowd is potentially life-saving. To investigate how the visual system processes threatening actions, we employed a visual search paradigm with threatening boxer targets among emotionally-neutral walker distractors, and vice versa. We found that a boxer popped out for both intact and scrambled actions, whereas walkers did not. A reverse correlation analysis revealed that observers' responses clustered around the time of the âpunch", a signature movement of boxing actions, but not around specific movements of the walker. These findings support the existence of a detector for signature movements in action perception. This detector helps in rapidly detecting aggressive behavior in a crowd, potentially through an expedited (sub)cortical threat-detection mechanism
Enriched Environment Increases PCNA and PARP1 Levels in Octopus vulgaris Central Nervous System: First Evidence of Adult Neurogenesis in Lophotrochozoa
Organisms showing a complex and centralized nervous system, such as teleosts, amphibians, reptiles, birds and mammals, and among invertebrates, crustaceans and insects, can adjust their behavior according to the environmental challenges. Proliferation, differentiation, migration, and axonal and dendritic development of newborn neurons take place in brain areas where structural plasticity, involved in learning, memory, and sensory stimuli integration, occurs. Octopus vulgaris has a complex and centralized nervous system, located between the eyes, with a hierarchical organization. It is considered the most "intelligent" invertebrate for its advanced cognitive capabilities, as learning and memory, and its sophisticated behaviors. The experimental data obtained by immunohistochemistry and western blot assay using proliferating cell nuclear antigen and poli (ADP-ribose) polymerase 1 as marker of cell proliferation and synaptogenesis, respectively, revealed cell proliferation in areas of brain involved in learning, memory, and sensory stimuli integration. Furthermore, we showed how enriched environmental conditions affect adult neurogenesis
Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases.
Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.Includes MRC, NIHR, Wellcome Trust, H2020 and FP7
- âŠ