136 research outputs found

    An enhanced disk averaged CFD model for the simulation of horizontal axis tidal turbines

    Get PDF
    Simulating fully resolved Horizontal Axis Tidal Turbine (HATT) geometry for a time period great enough to resolve a fully developed wake, and accurately predict power and thrust characteristics, is computationally very expensive. The BEM-CFD method is an enhanced actuator disk and is able to reduce the computational cost by simulating a time averaged downstream velocity field. Current implementations fall short of accurately determining tip losses, which are a function of the hydrofoil geometry. This work proposes a method of addressing this shortfall by modifying the angle of attack to conform to the constraints outlined in Prandtl's lifting line theory, i.e. the zero lift angle of attack at the hydrofoil tip. The revised model is compared to existing BEM-CFD methods and validated against experimental data. The revised BEM-CFD method presented in this work shows a significant improvement over previous BEM-CFD methods when predicting power and thrust. The coefficient of power is reduced from 0.57 (approx. 30% above experiment) to 0.44 (approx. 3% above experiment). An increase in turbulence intensity in the rotor region, in particular at the wake boundary, improves the recovery of the wake without the addition of empirical turbulence source terms. Good correlation with experimental results for power, thrust and wake prediction, is observed. The model may also be applied to wind turbines

    Profitable and Sustainable Grazing Systems for Livestock Producers with Saline Land in Southern Australia

    Get PDF
    Dryland salinity affects over 2.5 M ha in Australia, mostly in southern states and is expanding at 3-5% per year (NLWRA, 2001). The prognosis is for considerable expansion of the area affected by salinity and waterlogging (1217 M ha at equilibrium), because groundwater levels continue to rise and only small-scale land management programmes have been implemented. In addition, many waterways are increasingly saline, especially in the Murray Darling Basin and in Western Australia (WA). Sustainable Grazing on Saline Land (SGSL) addresses the need to make productive use of saline land and water resources. Its research component operates at 12 sites across WA, South Australia (SA), Victoria and New South Wales (NSW) and consists of coordinated activities that have regional relevance and contribute nationally. The programme seeks to develop and demonstrate profitable and sustainable grazing systems on saline land that have positive environmental and social impacts. Whilst there are different priority research issues at each site, data collection is governed by common measurement protocols for salt and water movement, biodiversity, and pasture and animal performance in order to make comparisons and data sharing across sites practical

    Computational Fluid Dynamics and Visualisation of Coastal Flows in Tidal Channels Supporting Ocean Energy Development

    Get PDF
    Flow characteristics in coastal regions are strongly influenced by the topography of the seabed and understanding the fluid dynamics is necessary before installation of tidal stream turbines (TST). In this paper, the bathymetry of a potential TST deployment site is used in the development of the a CFD (Computational Fluid Dynamics) model. The steady state k-ϵ and transient Large Eddy Simulation (LES) turbulence methods are employed and compared. The simulations are conducted with a fixed representation of the ocean surface, i.e., a rigid lid representation. In the vicinity of Horse Rock a study of the pressure difference shows that the small change in height of the water column is negligible, providing confidence in the simulation results. The stream surface method employed to visualise the results has important inherent characteristics that can enhance the visual perception of complex flow structures. The results of all cases are compared with the flow data transect gathered by an Acoustic Doppler Current Profiler (ADCP). It has been understood that the k-ϵ method can predict the flow pattern relatively well near the main features of the domain and the LES model has the ability to simulate some important flow patterns caused by the bathymetry

    Star Formation at 4<z<64 < z < 6 From the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH)

    Get PDF
    Using the first 50% of data collected for the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) observations on the 1.8 deg2^2 Cosmological Evolution Survey (COSMOS) we estimate the masses and star formation rates of 3398 M>1010MM_*>10^{10}M_\odot star-forming galaxies at 4<z<64 < z < 6 with a substantial population up to M1011.5MM_* \gtrsim 10^{11.5} M_\odot. We find that the strong correlation between stellar mass and star formation rate seen at lower redshift (the "main sequence" of star-forming galaxies) extends to z6z\sim6. The observed relation and scatter is consistent with a continued increase in star formation rate at fixed mass in line with extrapolations from lower-redshift observations. It is difficult to explain this continued correlation, especially for the most massive systems, unless the most massive galaxies are forming stars near their Eddington-limited rate from their first collapse. Furthermore, we find no evidence for moderate quenching at higher masses, indicating quenching either has not occurred prior to z6z \sim 6 or else occurs rapidly, so that few galaxies are visible in transition between star-forming and quenched.Comment: ApJL, accepte

    Flux transfer event observation at Saturn's dayside magnetopause by the Cassini spacecraft

    Get PDF
    We present the first observation of a flux rope at Saturn's dayside magnetopause. This is an important result because it shows that the Saturnian magnetopause is conducive to multiple X-line reconnection and flux rope generation. Minimum variance analysis shows that the magnetic signature is consistent with a flux rope. The magnetic observations were well fitted to a constant-α force-free flux rope model. The radius and magnetic flux content of the rope are estimated to be 4600–8300 km and 0.2–0.8 MWb, respectively. Cassini also observed five traveling compression regions (remote signatures of flux ropes), in the adjacent magnetosphere. The magnetic flux content is compared to other estimates of flux opening via reconnection at Saturn

    Spectroscopic confirmation of a Coma Cluster progenitor at z~2.2

    Get PDF
    We report the spectroscopic confirmation of a new protocluster in the COSMOS field at z ∼ 2.2, originally identified as an overdensity of narrow-band selected Hα emitting candidates. With only two masks of Keck/MOSFIRE near-IR spectroscopy in both H (∼ 1.47-1.81 μm) and K (∼ 1.92- 2.40 μm) bands (∼ 1.5 hour each), we confirm 35 unique protocluster members with at least two emission lines detected with S/N > 3. Combined with 12 extra members from the zCOSMOS-deep spectroscopic survey (47 in total), we estimate a mean redshift, line-of-sight velocity dispersion, and total mass of zmean=2.23224 ± 0.00101, σlos=645 ± 69 km s−1, and Mvir ∼ (1 − 2)×10^14 M⊙ for this protocluster, respectively. We estimate a number density enhancement of δg ∼ 7 for this system and we argue that the structure is likely not virialized at z ∼ 2.2. However, in a spherical collapse model, δg is expected to grow to a linear matter enhancement of ∼ 1.9 by z=0, exceeding the collapse threshold of 1.69, and leading to a fully collapsed and virialized Coma-type structure with a total mass of Mdyn(z=0) ∼ 9.2×10^14 M⊙ by now. This observationally efficient confirmation suggests that large narrow-band emission-line galaxy surveys, when combined with ancillary photometric data, can be used to effectively trace the large-scale structure and protoclusters at a time when they are mostly dominated by star-forming galaxies

    Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker

    Development of HyBeacon® probes for the forensic detection of Panthera, rhinoceros, and pangolin species.

    Get PDF
    The Illegal Wildlife Trade (IWT) represents a multi-billion dollar black-market industry whereby wild species are illegally taken from their natural environment and sold. A common question asked by wildlife forensic scientists pertains to species and/or genus identity, which currently requires multi-step processing. Our work details the development of three HyBeacon® probes, used for the presumptive detection of rhinoceros, pangolin and key target species in the Panthera genus. The approach can be performed in a single tube using melt curve analysis and provide rapid assessment of sample identity. Using synthetic DNA of representative species, early data suggest the approach is sensitive enough to achieve species identification with <10 cells. Future development and assay validation can allow the rapid screening of multiple seized items before confirmatory DNA sequencing

    Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease

    Get PDF
    BACKGROUND: The order and magnitude of pathologic processes in Alzheimer's disease are not well understood, partly because the disease develops over many years. Autosomal dominant Alzheimer's disease has a predictable age at onset and provides an opportunity to determine the sequence and magnitude of pathologic changes that culminate in symptomatic disease. METHODS: In this prospective, longitudinal study, we analyzed data from 128 participants who underwent baseline clinical and cognitive assessments, brain imaging, and cerebrospinal fluid (CSF) and blood tests. We used the participant's age at baseline assessment and the parent's age at the onset of symptoms of Alzheimer's disease to calculate the estimated years from expected symptom onset (age of the participant minus parent's age at symptom onset). We conducted cross-sectional analyses of baseline data in relation to estimated years from expected symptom onset in order to determine the relative order and magnitude of pathophysiological changes. RESULTS: Concentrations of amyloid-beta (Aβ)(42) in the CSF appeared to decline 25 years before expected symptom onset. Aβ deposition, as measured by positron-emission tomography with the use of Pittsburgh compound B, was detected 15 years before expected symptom onset. Increased concentrations of tau protein in the CSF and an increase in brain atrophy were detected 15 years before expected symptom onset. Cerebral hypometabolism and impaired episodic memory were observed 10 years before expected symptom onset. Global cognitive impairment, as measured by the Mini-Mental State Examination and the Clinical Dementia Rating scale, was detected 5 years before expected symptom onset, and patients met diagnostic criteria for dementia at an average of 3 years after expected symptom onset. CONCLUSIONS: We found that autosomal dominant Alzheimer's disease was associated with a series of pathophysiological changes over decades in CSF biochemical markers of Alzheimer's disease, brain amyloid deposition, and brain metabolism as well as progressive cognitive impairment. Our results require confirmation with the use of longitudinal data and may not apply to patients with sporadic Alzheimer's disease. (Funded by the National Institute on Aging and others; DIAN ClinicalTrials.gov number, NCT00869817.)
    corecore