93 research outputs found

    THE APPROACH TO THE ANALYSIS OF ELECTRICAL FIELD DISTRIBUTION IN THE SETUP OF PAPER INSULATED ELECTRODES IN OIL

    Get PDF
    Article presents the problem of the approach to the analysis of electrical field distribution in the model insulating system, which, in the author's experimental research, was used to the assessment of the influence of paper insulation on the mechanism of electrical discharge initiation in mineral oil. The main assumptions of the planned numerical works based on the finite element method were described and scientific aim of the numerical analysis were characterized in this paper. Both the assumptions and the scientific aim were related to the conclusions from the experimental works, especially to the measured times to initiation of the discharges developing in mineral transformer oil, indicating on the important role of the oil quality in the process of discharge initiation in the system of the insulated by paper electrodes immersed in oil

    Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions

    Get PDF
    In the study of hydroponics, questions have risen concerning about ideal water flow that allow the plant to absorbing highest amount of nutrient from the nutrient solution during irrigating process. Thus, this experiment was aimed to determine the ideal water flow rate in nutrient film technique system in order to optimize the nutrients uptake with growth of lettuce. Different flow rates 10, 20 and 30 L/hour were assigned as T1, T2 and T3, respectively, with lettuce plants and the space between plants 15 cm. Generally, the growth decreased significantly with increasing in water flow rate. The analysis of lettuce hydroponics variable reveals that flow rate at 20 L/hour provides higher mean rank rather than other flow rate 10 L/hour and 30 L/hour. The findings of this research stated that if flow rate is increased to 30 L/hour plant height, number of leaves, number of outer and inner leaves, heat mass and stem mass decreases. On the whole from the analysis it is concluded that for flow rate 20 L/hour enhances the growth rate of lettuce in hydroponics hence it is stated that flow rate of 20 L/hour is good flow rate rather than 10 L/hour and 30 L/hour. Water flow in nutrient film technique is essential to be ideal through allow the plants root to absorb all elements needed form nutrient solutions in hydroponics system. And thus, water movement in the system and the rate of turnover should be designed to ensure good contact time for roots and water flow in the system

    ADAMTS19-associated heart valve defects: Novel genetic variants consolidating a recognizable cardiac phenotype

    Get PDF
    Recently, ADAMTS19 was identified as a novel causative gene for autosomal recessive heart valve disease (HVD), affecting mainly the aortic and pulmonary valves. Exome sequencing and data repository (CentoMD) analyses were performed to identify patients with ADAMTS19 variants (two families). A third family was recognized based on cardiac phenotypic similarities and SNP array homozygosity. Three novel loss of function (LoF) variants were identified in six patients from three families. Clinically, all patients presented anomalies of the aortic/pulmonary valves, which included thickening of valve leaflets, stenosis and insufficiency. Three patients had (recurrent) subaortic membrane, suggesting that ADAMTS19 is the first gene identified related to discrete subaortic stenosis. One case presented a bi-commissural pulmonary valve. All patients displayed some degree of atrioventricular valve insufficiency. Other cardiac anomalies included atrial/ventricular septal defects, persistent ductus arteriosus, and mild dilated ascending aorta. Our findings confirm that biallelic LoF variants in ADAMTS19 are causative of a specific and recognizable cardiac phenotype. We recommend considering ADAMTS19 genetic testing in all patients with multiple semilunar valve abnormalities, particularly in the presence of subaortic membrane. ADAMTS19 screening in patients with semilunar valve abnormalities is needed to estimate the frequency of the HVD related phenotype, which might be not so rare

    Lead, Cadmium and Cobalt (Pb, Cd, and Co) Leaching of Glass-Clay Containers by pH Effect of Food

    Get PDF
    Recent studies have shown that handcrafted glass-clay containers are a health risk because they can be contaminated by heavy metals, which can be transferred to food, thus reaching the human body to potentially cause illness. Therefore, in the present work, we evaluate the leaching of lead, cadmium, and cobalt from glass-clay containers into two types of food: tomato sauce (salsa), and chickpea puree. The containers were obtained from four regions in the Mexican state of Hidalgo. Repetitive extractions from the containers were carried out to quantify the leaching of the heavy metals into the salsa, the chickpea puree, and acetic acid using the technique proposed by the USFDA. The results show that greater use of the containers leads to more leaching of heavy metals into both types of food and into the acetic acid, with the greatest metal extraction recorded for the Ixmiquilpan vessels. These results indicate that the metals present in the glass-clay containers leach into the food and that increased reuse increases the risk to the people who use them in food preparation

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative

    Get PDF

    Exome-wide association study to identify rare variants influencing COVID-19 outcomes : Results from the Host Genetics Initiative

    Get PDF
    Publisher Copyright: Copyright: © 2022 Butler-Laporte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.Peer reviewe

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore