236 research outputs found

    Stomatal control of leaf fluxes of carbonyl sulfide and CO<sub>2</sub> in a <i>Typha</i> freshwater marsh

    Get PDF
    Carbonyl sulfide (COS) is an emerging tracer to constrain land photosynthesis at canopy to global scales, because leaf COS and CO2 uptake processes are linked through stomatal diffusion. The COS tracer approach requires knowledge of the concentration normalized ratio of COS uptake to photosynthesis, commonly known as the leaf relative uptake (LRU). LRU is known to increase under low light, but the environmental controls over LRU variability in the field are poorly understood due to scant leaf scale observations.Here we present the first direct observations of LRU responses to environmental variables in the field. We measured leaf COS and CO2 fluxes at a freshwater marsh in summer 2013. Daytime leaf COS and CO2 uptake showed similar peaks in the mid-morning and late afternoon separated by a prolonged midday depression, highlighting the common stomatal control on diffusion. At night, in contrast to CO2, COS uptake continued, indicating partially open stomata. LRU ratios showed a clear relationship with photosynthetically active radiation (PAR), converging to 1.0 at high PAR, while increasing sharply at low PAR. Daytime integrated LRU (calculated from daytime mean COS and CO2 uptake) ranged from 1 to 1.5, with a mean of 1.2 across the campaign, significantly lower than the previously reported laboratory mean value (∼ 1.6). Our results indicate two major determinants of LRU – light and vapor deficit. Light is the primary driver of LRU because CO2 assimilation capacity increases with light, while COS consumption capacity does not. Superimposed upon the light response is a secondary effect that high vapor deficit further reduces LRU, causing LRU minima to occur in the afternoon, not at noon. The partial stomatal closure induced by high vapor deficit suppresses COS uptake more strongly than CO2 uptake because stomatal resistance is a more dominant component in the total resistance of COS. Using stomatal conductance estimates, we show that LRU variability can be explained in terms of different patterns of stomatal vs. internal limitations on COS and CO2 uptake. Our findings illustrate the stomata-driven coupling of COS and CO2 uptake during the most photosynthetically active period in the field and provide an in situ characterization of LRU – a key parameter required for the use of COS as a photosynthetic tracer

    Typical offsets for threatened species

    Full text link

    A soil diffusion–reaction model for surface COS flux: COSSM v1

    Get PDF
    Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments but not explicitly resolved diffusion in the soil column. We developed a mechanistic diffusion–reaction model for soil COS exchange that accounts for COS uptake and production, relates source–sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP), OK, USA) and an oak woodland (Stunt Ranch Reserve, CA, USA). The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink–source transitions. We found that soil COS uptake is strongly diffusion controlled and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales

    Improving averted loss estimates for better biodiversity outcomes from offset exchanges

    Get PDF
    Biodiversity offsetting aims to achieve at least ‘no net loss’ of biodiversity by fully compensating for residual development-induced biodiversity losses after the mitigation hierarchy (avoid, minimise, remediate) has been applied. Actions used to generate offsets can include securing protection, maintaining condition, or enhancing condition of targeted biodiversity at an offset site. Protection and maintenance actions aim to prevent future loss of biodiversity, so such offsets are referred to as ‘averted loss’ offsets. However, the benefits of such approaches can be highly uncertain and opaque, because assumptions about the change in likelihood of loss due to the offset are often implicit. As a result, the gain generated by averting losses can be intentionally or inadvertently overestimated, leading to offset outcomes that are insufficient for achieving no net loss of biodiversity. We present a method and decision tree to guide consistent and credible estimation of the likelihood of loss of a proposed offset site with and without protection, for use when calculating the amount of benefit associated with the ‘protection’ component of averted loss offsets. In circumstances such as when a jurisdictional offset policy applies to most impacts, plausible estimates of averted loss can be very low. Averting further loss of biodiversity is desirable, and averted loss offsets can be a valid approach for generating tangible gains. However, overestimation of averted loss benefits poses a major risk to biodiversity

    Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

    Get PDF
    Nighttime vegetative uptake of carbonyl sulfide (COS) can exist due to the incomplete closure of stomata and the light independence of the enzyme carbonic anhydrase, which complicates the use of COS as a tracer for gross primary productivity (GPP). In this study we derived nighttime COS fluxes in a boreal forest (the SMEAR II station in Hyytiälä, Finland; 61°51′ N, 24°17′ E; 181 m a.s.l.) from June to November 2015 using two different methods: eddy-covariance (EC) measurements (FCOS-EC) and the radon-tracer method (FCOS-Rn). The total nighttime COS fluxes averaged over the whole measurement period were −6.8 ± 2.2 and −7.9 ± 3.8 pmol m−2 s−1 for FCOS-Rn and FCOS-EC, respectively, which is 33–38 % of the average daytime fluxes and 21 % of the total daily COS uptake. The correlation of 222Rn (of which the source is the soil) with COS (average R2  =  0.58) was lower than with CO2 (0.70), suggesting that the main sink of COS is not located at the ground. These observations are supported by soil chamber measurements that show that soil contributes to only 34–40 % of the total nighttime COS uptake. We found a decrease in COS uptake with decreasing nighttime stomatal conductance and increasing vapor-pressure deficit and air temperature, driven by stomatal closure in response to a warm and dry period in August. We also discuss the effect that canopy layer mixing can have on the radon-tracer method and the sensitivity of (FCOS-EC) to atmospheric turbulence. Our results suggest that the nighttime uptake of COS is mainly driven by the tree foliage and is significant in a boreal forest, such that it needs to be taken into account when using COS as a tracer for GPP

    Evaporation and carbonic anhydrase activity recorded in oxygen isotope signatures of net CO2 fluxes from a Mediterranean soil

    Get PDF
    The oxygen stable isotope composition (d18O) of CO2 is a valuable tool for studying the gas exchange between terrestrial ecosystems and the atmosphere. In the soil, it records the isotopic signal of water pools subjected to precipitation and evaporation events. The d18O of the surface soil net CO2 flux is dominated by the physical processes of diffusion of CO2 into and out of the soil and the chemical reactions during CO2–H2O equilibration. Catalytic reactions by the enzyme carbonic anhydrase, reducing CO2 hydration times, have been proposed recently to explain field observations of the d18O signatures of net soil CO2 fluxes. How important these catalytic reactions are for accurately predicting large-scale biosphere fluxes and partitioning net ecosystem fluxes is currently uncertain because of the lack of field data. In this study, we determined the d18O signatures of net soil CO2 fluxes from soil chamber measurements in a Mediterranean forest. Over the 3 days of measurements, the observed d18O signatures of net soil CO2 fluxes became progressively enriched with a well-characterized diurnal cycle. Model simulations indicated that the d18O signatures recorded the interplay of two effects: (1) progressive enrichment of water in the upper soil by evaporation, and (2) catalytic acceleration of the isotopic exchange between CO2 and soil water, amplifying the contributions of ‘atmospheric invasion’ to net signatures. We conclude that there is a need for better understanding of the role of enzymatic reactions, and hence soil biology, in determining the contributions of soil fluxes to oxygen isotope signals in atmospheric CO2

    Drone Measurements of Solar-Induced Chlorophyll Fluorescence Acquired with a Low-Weight DFOV Spectrometer System

    Get PDF
    Solar induced chlorophyll fluorescence (SIF) emitted from plant canopies is now retrievable from space. In addition, SIF is now also routinely measured from fixed tower platforms. However there is a scale gap between temporally continuous tower measurements and spatially coarse satellite retrievals that is now being bridged by drone technology. Drone retrievals of SIF can be used to help unravel the structural and species component dependencies that occur across space on the scale of meters in heterogeneous vegetation types. Also when flown at sufficient altitude, drones can be used to simulate, and potentially validate satellite retrievals of SIF. We flew a dual field of view spectrometer system, the Piccolo doppio, above a boreal forest with the aim of retrieving SIF. Our flights were designed to assess both spatial heterogeneity of SIF driven by changes in vegetation cover type and to simulate satellite pixels by flying at a relatively high altitude.Peer reviewe
    • …
    corecore