90 research outputs found

    Are mathematics students thinking as Kepler? Conics and mathematical machines

    Get PDF
    Our interest is the analysis of the thinking processes of some university students who worked on the design of a machine that uses a tightened thread to draw a hyperbola. Previously, the students worked with other machines for conics. We focus on the way past experience becomes part of a new experience, in which making of the machine is the end point of the task. This implies the presence of technological and scientific aspects, whose interplay is fundamental to shape thinking

    University students at work with mathematical machines to trace conics

    Get PDF
    This paper aims to investigate the way past experience with some tools to draw conics becomes part of the experience of designing a new drawer. In particular, it centres on the thinking processes of a group of university students who have the following task: to design a hyperbola drawer. The analysis is carried out using the perspectives of transfer of learning and instrumental approach, and focuses on utilization schemes and the interplay between scientific and technological aspects

    Preserving p-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications

    Get PDF
    Covalent functionalization tailors carbon nanotubes for a wide range of applications in varying environments. Its strength and stability of attachment come at the price of degrading the carbon nanotubes sp 2 network and destroying the tubes electronic and optoelectronic features. Here we present a non-destructive, covalent, gram-scale functionalization of single-walled carbon nanotubes by a new 2+1] cycloaddition. The reaction rebuilds the extended p-network, thereby retaining the outstanding quantum optoelectronic properties of carbon nanotubes, including bright light emission at high degree of functionalization (1 group per 25 carbon atoms). The conjugation method described here opens the way for advanced tailoring nanotubes as demonstrated for light-triggered reversible doping through photochromic molecular switches and nanoplasmonic gold-nanotube hybrids with enhanced infrared light emission

    Wilms tumour

    Get PDF
    Wilms tumour (WT) is a childhood embryonal tumour that is paradigmatic of the intersection between disrupted organogenesis and tumorigenesis. Many WT genes play a critical (non-redundant) role in early nephrogenesis. Improving patient outcomes requires advances in understanding and targeting of the multiple genes and cellular control pathways now identified as active in WT development. Decades of clinical and basic research have helped to gradually optimize clinical care. Curative therapy is achievable in 90% of affected children, even those with disseminated disease, yet survival disparities within and between countries exist and deserve commitment to change. Updated epidemiological studies have also provided novel insights into global incidence variations. Introduction of biology-driven approaches to risk stratification and new drug development has been slower in WT than in other childhood tumours. Current prognostic classification for children with WT is grounded in clinical and pathological findings and in dedicated protocols on molecular alterations. Treatment includes conventional cytotoxic chemotherapy and surgery, and radiation therapy in some cases. Advanced imaging to capture tumour composition, optimizing irradiation techniques to reduce target volumes, and evaluation of newer surgical procedures are key areas for future research

    The French Didactic Tradition in Mathematics

    Get PDF
    This chapter presents the French didactic tradition. It first describes theemergence and development of this tradition according to four key features (role ofmathematics and mathematicians, role of theories, role of design of teaching andlearning environments, and role of empirical research), and illustrates it through two case studies respectively devoted to research carried out within this traditionon algebra and on line symmetry-reflection. It then questions the influence of thistradition through the contributions of four researchers from Germany, Italy, Mexicoand Tunisia, before ending with a short epilogue

    Internal kinematics of spiral galaxies in distant clusters IV. Gas kinematics of spiral galaxies in intermediate redshift clusters and in the field

    Get PDF
    (Abridged) We trace the interaction processes of galaxies at intermediate redshift by measuring the irregularity of their ionized gas kinematics, and investigate these irregularities as a function of the environment (cluster versus field) and of morphological type (spiral versus irregular). Our sample consists of 92 distant galaxies. 16 cluster (z~0.3 and z~0.5) and 29 field galaxies (mean z=0.44) of these have velocity fields with sufficient signal to be analyzed. We find that the fraction of galaxies that have irregular gas kinematics is remarkably similar in galaxy clusters and in the field at intermediate redshifts. The distribution of the field and cluster galaxies in (ir)regularity parameters space is also similar. On the other hand galaxies with small central concentration of light, that we see in the field sample, are absent in the cluster sample. We find that field galaxies at intermediate redshifts have more irregular velocity fields as well as more clumpy and less centrally concentrated light distributions than their local counterparts. Comparison with a SINS sample of 11 z ~ 2 galaxies shows that these distant galaxies have more irregular gas kinematics than our intermediate redshift cluster and field sample. We do not find a dependence of the irregularities in gas kinematics on morphological type. We find that two different indicators of star formation correlate with irregularity in the gas kinematics. More irregular gas kinematics, also more clumpy and less centrally concentrated light distributions of spiral field galaxies at intermediate redshifts in comparison to their local counterparts indicate that these galaxies are probably still in the process of building their disks via mechanisms such as accretion and mergers. On the other hand, they have less irregular gas kinematics compared to galaxies at z ~ 2.Comment: Accepted for publication in A&A, high resolution version available at http://www.astro.rug.nl/~kutdemir/13262/13262_hr.p

    Searching for large-scale structures around high-redshift radio galaxies with Herschel

    Get PDF
    This paper presents the first results of a far-infrared search for protocluster-associated galaxy overdensities using the Spectral and Photometric Imaging REciever (SPIRE) instrument on-board the Herschel Space Observatory. Large (∼400 arcmin2) fields surrounding 26 powerful high-redshift radio galaxies (2.0 1028.5 WHz−1) are mapped at 250, 350 and 500 μm to give a unique wide-field sample. On average, the fields have a higher than expected, compared to blank fields, surface density of 500 μm sources within 6 comoving Mpc of the radio galaxy. The analysis is then restricted to potential protocluster members only, which are identified using a far-infrared colour selection; this reveals significant overdensities of galaxies in two fields, neither of which are previously known protoclusters. The probability of finding two overdensities of this size by chance, given the number of fields observed, is 5 × 10−4. Overdensities here exist around radio galaxies with L500 MHz ≳ 1029 WHz−1 and z 1014 M⊙. However, the large uncertainty in the redshift estimation means that it is possible that these far-infrared overdensities consist of several structures across the redshift range searched

    Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations

    Get PDF
    Variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continue to cause disease and impair the effectiveness of treatments. The therapeutic potential of convergent neutralizing antibodies (NAbs) from fully recovered patients has been explored in several early stages of novel drugs. Here, we identified initially elicited NAbs (Ig Heavy, Ig lambda, Ig kappa) in response to COVID-19 infection in patients admitted to the intensive care unit at a single center with deep RNA sequencing (>100 million reads) of peripheral blood as a diagnostic tool for predicting the severity of the disease and as a means to pinpoint specific compensatory NAb treatments. Clinical data were prospectively collected at multiple time points during ICU admission, and amino acid sequences for the NAb CDR3 segments were identified. Patients who survived severe COVID-19 had significantly more of a Class 3 antibody (C135) to SARS-CoV-2 compared to non-survivors (15059.4 vs. 1412.7, p = 0.016). In addition to highlighting the utility of RNA sequencing in revealing unique NAb profiles in COVID-19 patients with different outcomes, we provided a physical basis for our findings via atomistic modeling combined with molecular dynamics simulations. We established the interactions of the Class 3 NAb C135 with the SARS-CoV-2 spike protein, proposing a mechanistic basis for inhibition via multiple conformations that can effectively prevent ACE2 from binding to the spike protein, despite C135 not directly blocking the ACE2 binding motif. Overall, we demonstrate that deep RNA sequencing combined with structural modeling offers the new potential to identify and understand novel therapeutic(s) NAbs in individuals lacking certain immune responses due to their poor endogenous production. Our results suggest a possible window of opportunity for administration of such NAbs when their full sequence becomes available. A method involving rapid deep RNA sequencing of patients infected with SARS-CoV-2 or its variants at the earliest infection time could help to develop personalized treatments using the identified specific NAbs
    corecore