45 research outputs found

    DataSHIELD: resolving a conflict in contemporary bioscience—performing a pooled analysis of individual-level data without sharing the data

    Get PDF
    Background Contemporary bioscience sometimes demands vast sample sizes and there is often then no choice but to synthesize data across several studies and to undertake an appropriate pooled analysis. This same need is also faced in health-services and socio-economic research. When a pooled analysis is required, analytic efficiency and flexibility are often best served by combining the individual-level data from all sources and analysing them as a single large data set. But ethico-legal constraints, including the wording of consent forms and privacy legislation, often prohibit or discourage the sharing of individual-level data, particularly across national or other jurisdictional boundaries. This leads to a fundamental conflict in competing public goods: individual-level analysis is desirable from a scientific perspective, but is prevented by ethico-legal considerations that are entirely valid

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF
    Correction: Volume53, Issue5 Page 762-762 DOI: 10.1038/s41588-021-00832-z Published MAY 2021Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequencyPeer reviewe

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    Publisher Correction: Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF

    Prevalence and extent of infarct and microvascular obstruction following different reperfusion therapies in ST-elevation myocardial infarction

    Get PDF
    Background: Microvascular obstruction (MVO) describes suboptimal tissue perfusion despite restoration of infarct-related artery flow. There are scarce data on Infarct Size (IS) and MVO in relation to the mode and timing of reperfusion. We sought to characterise the prevalence and extent of microvascular injury and IS using Cardiovascular magnetic resonance (CMR), in relation to the mode of reperfusion following acute ST-Elevation Myocardial Infarction (STEMI). Methods: CMR infarct characteristics were measured in 94 STEMI patients (age 61.0 ± 13.1 years) at 1.5 T. Seventy-three received reperfusion therapy: primary percutaneous coronary-intervention (PPCI, n = 47); thrombolysis (n = 12); rescue PCI (R-PCI, n = 8), late PCI (n = 6). Twenty-one patients presented late (>12 hours) and did not receive reperfusion therapy. Results: IS was smaller in PPCI (19.8 ± 13.2% of LV mass) and thrombolysis (15.2 ± 10.1%) groups compared to patients in the late PCI (40.0 ± 15.6%) and R-PCI (34.2 ± 18.9%) groups, p <0.001. The prevalence of MVO was similar across all groups and was seen at least as frequently in the non-reperfused group (15/21, [76%] v 33/59, [56%], p = 0.21) and to a similar magnitude (1.3 (0.0-2.8) v 0.4 [0.0-2.9]% LV mass, p = 0.36) compared to patients receiving early reperfusion therapy. In the 73 reperfused patients, time to reperfusion, ischaemia area at risk and TIMI grade post-PCI were the strongest independent predictors of IS and MVO. Conclusions: In patients with acute STEMI, CMR-measured MVO is not exclusive to reperfusion therapy and is primarily related to ischaemic time. This finding has important implications for clinical trials that use CMR to assess the efficacy of therapies to reduce reperfusion injury in STEMI

    Loss-of-function mutations in APOC3, triglycerides, and coronary disease.

    No full text
    Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype.We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons.An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P&lt;1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)).Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.)

    Loss-of-function mutations in <em>APOC3</em>, triglycerides, and coronary disease

    No full text
    Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype.We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons.An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)).Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.)

    Loss-of-function mutations in APOC3, triglycerides, and coronary disease.

    No full text
    BACKGROUND: Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS: We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS: An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G\u2192A and IVS3+1G\u2192T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1 710(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8 710(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4 710(-6)). CONCLUSIONS: Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease
    corecore