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Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele
frequency, MAF > 0.05). In a meta-analysis of up to >1.3 million participants, we discovered 106 new
BP-associated genomic regions and 87 rare (MAF ≤ 0.01) variant BP associations (P < 5 × 10-8), of
which 32 were in new BP-associated loci and 55 were independent BP-associated SNVs within known
BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than
common variant effects and indicate potential candidate causal genes at new and known loci (e.g.
GATA5, PLCB3). BP-associated variants (including rare and common) were enriched in regions of
active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life.
Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and
diastolic BP on large artery stroke. Our study demonstrates the utility of rare variant analyses for
identifying candidate genes and the results highlight potential therapeutic targets.

 
 
 
 
Increased blood pressure (BP) is a major risk factor for cardiovascular disease (CVD) and related disability
worldwide1. Its complications are estimated to account for ~10.7 million premature deaths annually1.
Genome-wide association studies (GWAS) and exome array-wide association studies (EAWAS) have
identified over 1,000 BP-associated single nucleotide variants (SNVs)2-19 for this complex, heritable,
polygenic trait. The majority of these are common SNVs (MAF > 0.05) with small effects on BP. Most
reported associations involve non-coding SNVs, and due to linkage disequilibrium (LD) between common
variants, these studies provide limited insights into the specific causal genes through which their effects are
mediated. The exome array was designed to facilitate analyses of rare coding variants (MAF ≤ 0.01) with
potential functional consequences. Over 80% of SNVs on the array are rare, ~6% are low frequency (0.01 <
MAF ≤ 0.05), and ~80% are missense, i.e. the variants implicate a candidate causal gene through changes to
the amino acid sequence. Previously, using the exome array, we identified four BP loci with rare variant
associations (RBM47, COL21A1, RRAS, DBH)13,14 and a rare nonsense BP variant in ENPEP, encoding an
aminopeptidase with a known role in BP regulation13. These findings confirmed the utility of rare variant
studies for identifying potential causal genes. These rare variant associations had larger effects on BP
(typically ~1.5 mmHg per minor allele) than common variants identified by previous studies (typically ~0.5
mmHg per minor allele), many of which had power to detect common variants with large effects. Here, we
combine the studies from our previous two exome array reports with additional studies, including the UK
Biobank (UKBB) study, to analyze up to ~1.319 million participants and investigate the role of rare SNVs in
BP regulation.

 
 



Results
We performed an EAWAS and a rare variant GWAS (RV-GWAS) of imputed and genotyped SNVs to
identify variants associated with BP traits, hypertension (HTN), and inverse normal transformed systolic BP
(SBP), diastolic BP (DBP), and pulse pressure (PP) using (i) single variant analysis and (ii) a gene-based test
approach. An overview of our study design for both the EAWAS and for the RV-GWAS is provided in
Figure 1.

 
Blood pressure associations in the EAWAS. We performed a discovery meta-analysis to identify genetic
variants associated with BP in up to ~1.32 million individuals. To achieve this, we first performed a meta-
analysis of 247,315 exome array variants in up to 92 studies (870,217 participants, including UKBB) for
association with BP, Stage 1 (Fig. 1, Methods, and Supplementary Information). There were 362 BP loci
known at the time of the analysis (Supplementary Table 1), 240 of which were covered on the exome array.
To improve statistical power for discovery for a subset of variants significant in Stage 1 at P < 5 × 10-8

outside of the known BP regions (Supplementary Table 1a), we requested summary association statistics
from three additional studies (Million Veteran Program (MVP), deCODE, and GENOA). We then performed
meta-analyses of the three data request studies and Stage 1 results to discover novel variants associated with
BP. In total, 343 SNVs (200 genomic regions; Methods) were associated (P < 5 × 10-8) with one or more BP
traits in the Stage 2 single variant European (EUR) EAWAS meta-analyses involving up to ~1.168 million
individuals (Table 1, Fig. 2, Supplementary Table 2, and Supplementary Information). A further seven SNVs
(seven genomic regions) were only associated (P < 5 × 10-8) in the pan-ancestry (PA) meta-analyses of
~1.319 million individuals (Supplementary Table 2). All 350 SNV-BP associations were novel at the time of
analysis (204 loci), 220 have subsequently been reported20,21, and 130 SNVs (99 loci) remain novel,
including nine rare and 13 low-frequency SNVs (Fig. 2, Supplementary Table 2, Supplementary Fig. 1).

All nine novel rare BP-associated SNVs identified in the EAWAS were conditionally independent of
common variant associations within the respective regions (Supplementary Table 3) using the multi-SNP-
based conditional and joint association analysis (GCTA v1.91.4)22 with the Stage 1 EUR EAWAS results
(Methods and Supplementary Table 4). In addition to the rare variants, there were 147 additional distinct (P
< 1 × 10-6) common SNV-BP associations (46% were missense variants), and 18 distinct low-frequency
SNVs (89% were missense). Approximately 59% of the distinct BP-associated SNVs were coding or in
strong LD (r2 > 0.8) with coding SNVs. In total, 42 of the 99 novel loci had two or more distinct BP-
associated SNVs in the conditional analyses. Of the 50 loci that were previously identified using UKBB16,17

and were on the exome array, 43 replicated at P < 0.001 (Bonferroni correction for 50 known variants) in
samples independent of the original discovery (Supplementary Table 5).

 
Blood pressure associations from EUR RV-GWAS. We tested a further 29,454,346 (29,404,959 imputed
and 49,387 genotyped) rare SNVs for association with BP in 445,360 UKBB participants23 using BOLT-
LMM24 (Fig. 1 and Methods). The SNVs analyzed as part of the EAWAS were not included in the RV-
GWAS. Similar to EAWAS, within RV-GWAS we performed a single discovery meta-analyses to identify
rare SNVs associated with BP. In Stage 1 (UKBB), 84 rare SNVs outside of the known BP loci (at the time
of our analyses) were associated with one or more BP traits at P < 1 × 10-7 (Supplementary Table 6).
Additional data were requested from MVP for the 84 BP-associated SNVs in up to 225,112 EUR from the
MVP, and 66 were available. Meta-analyses of Stage 1 (UKBB) and results obtained from MVP were
performed for novel rare variant discovery. We identified 23 unique rare SNVs associated with one or more
BP traits (P < 5 × 10-8) with consistent direction of effects in a meta-analysis of UKBB and MVP (min
Pheterogeneity = 0.02) (Table 1, Fig. 2, Supplementary Table 7, and Supplementary Fig. 1). Two of the SNVs,
rs55833332 (p.Arg35Gly) in NEK7 and rs200383755 (p.Ser19Trp) in GATA5, were missense. Eleven rare
SNVs were genome-wide significant in UKBB alone but were not available in MVP and await further
support in independent studies (Supplementary Table 7).

 
Rare and low frequency variant associations at established BP loci. It is difficult to prioritize candidate
genes at common variant loci for functional follow up. We believe analysis of rare (MAF < 0.01) and very
low frequency coding variants (MAF ≤ 0.02) in known loci may provide further support for or identify a
candidate causal gene at a locus. Twelve of the 240 BP-associated regions had one or more conditionally
independent rare variant associations (P < 10-6 in the GCTA joint model of the EUR Stage 1 EAWAS;
Methods, Table 2, and Supplementary Table 3). A further nine loci had one or more conditionally
independent BP-associated SNVs with MAF ≤ 0.02 (Table 2 and Supplementary Table 8). In total, 183
SNVs (rare and common) across 110 known loci were not identified previously.

We used FINEMAP25 to fine-map 315 loci known at the time of our analysis and available in UKBB
GWAS, which provides dense coverage of genomic variation not available on the exome array. Of these, 36
loci had one or more conditionally independent rare variant associations (Supplementary Table 8), and 251
loci had multiple common variants associations. We also replicated rare variant associations that we reported
previously13,14 at RBM47, COL21A1, RRAS, and DBH (P < 5 × 10-5) in UKBB (independent of prior studies).
Overall, from both FINEMAP and GCTA, we identified 40 loci with one or more rare SNV associations,
independent of previously reported common variant associations (Table 3, Fig. 2, Supplementary Table 8,



and Supplementary Information).
We note that, of 256 known variants identified without UKBB participants (Supplementary Table

1a), 229 replicated at P < 1.95 × 10-4 (Bonferroni adjusted for 256 variants) in UKBB.

 
Gene-based tests to identify BP-associated genes. To test whether rare variants in aggregate affect BP
regulation, we performed gene-based tests for SBP, DBP, and PP using SKAT26

(https://genome.sph.umich.edu/wiki/RareMETALS), including SNVs with MAF ≤ 0.01 that were predicted
by VEP27 to have high or moderate impact (Methods). We performed separate analyses within the Stage 1
EAWAS and the UKBB RV-GWAS. Six genes in the EAWAS (FASTKD2, CPXM2, CENPJ, CDC42EP4,
OTOP2, SCARF2) and two in the RV-GWAS (FRY, CENPJ) were associated with BP (P < 2.5 × 10-6,
Bonferroni adjusted for ~20,000 genes) and were outside known and new BP loci (Supplementary Tables 1
and 9). To ensure these associations were not attributable to a single (sub-genome-wide significant) rare
variant, we also performed SKAT tests conditioning on the variant with the smallest P-value in the gene
(Methods and Supplementary Table 9). FRY had the smallest conditional P-value (P = 0.0004), but did not
pass our pre-determined conditional significance threshold (conditional SKAT P ≤ 0.0001; Methods),
suggesting that all gene associations are due to single (sub-genome-wide significant) rare variants and not
due to the aggregation of multiple rare variants.

Amongst the known loci, five genes (NPR1, DBH, COL21A1, NOX4, GEM) were associated with BP
due to multiple rare SNVs independent of the known common variant associations (conditional P ≤ 1 × 10-5;
Methods, Supplementary Information, and Supplementary Table 9) confirming the findings in the single
variant conditional analyses above (Supplementary Table 8).

We also performed gene-based tests using a MAF ≤ 0.05 threshold to assess sensitivity to the MAF ≤
0.01 threshold. The results were concordant with the MAF ≤ 0.01 threshold findings, and two new genes
(PLCB3 and CEP120) were associated with BP due to multiple SNVs and were robust to conditioning on
the top SNV in each gene (Supplementary Information and Supplementary Table 9).

 
Rare variant BP associations. In total, across the EAWAS and the RV-GWAS, there were 32 new BP-
associated rare variants spanning 18 new loci (Table 1 and Fig. 2). Of these 32, five (representing five loci)
were genome-wide significant for HTN, 22 (ten loci) for SBP, 14 (six loci) for DBP, and 15 (ten loci) for PP
(Supplementary Tables 1, 2, 3, 6, and 7). Ten of the new rare variants were missense. Within previously
reported loci, there were 55 independent rare-variant associations (representing 40 loci) from either the
EAWAS or RV-GWAS, making a total of 87 independent rare BP-associated SNVs. We identified 45 BP-
associated genes, eight of which were due to multiple rare variants and independent of common variant
associations (P < 1 × 10-4, Methods). Twenty-one rare variants were located within regulatory elements (e.g.
enhancers), highlighting genetic influence on BP levels through gene expression (Fig. 2). The rare variants
contributed to BP variance explained (Supplementary Information).

Power calculations are provided in the Supplementary Information and show that our study had 80%
power to detect an effect of 0.039 SD for a MAF = 0.01 (Extended Data Fig. 1). As anticipated, given
statistical power, some rare variants displayed larger effects on BP regulation than common variants (Fig. 2
and Supplementary Tables 3, 7, and 8); mean effects of rare SNVs for SBP and DBP were ~7.5 times larger
than common variants (mean effect ~0.12 SD/minor allele for rare SNVs, ~0.035 SD/minor allele for low-
frequency and ~0.016 SD/minor allele for common SNVs) and for PP were 8.5 times larger for rare variants
compared to common (mean effect ~0.135 SD/minor allele for rare SNVs, ~0.04 SD/minor allele for low-
frequency and ~0.016 SD/minor allele for common SNVs). Our study was exceptionally well-powered to
detect common variants (MAF > 0.05) with similarly large effects but found none, consistent with earlier BP
GWAS and genetic studies of some other common complex traits28,29,36.

 
Overlap of rare BP associations with monogenic BP genes. Twenty-four genes are reported in ClinVar to
cause monogenic conditions with hypertension or hypotension as a primary phenotype. Of these, three
(NR3C2, AGT, PDE3A) were associated with BP in SKAT tests in the EAWAS (P < 0.002, Bonferroni
adjusted for 24 tests; Supplementary Table 10). These genes also had genome-wide significant SNV-BP
associations in the EAWAS and/or RV-GWAS (Supplementary Table 10).

 
Functional annotation of rare BP-associated SNVs. None of the BP-associated rare SNVs (from known
or novel loci) had been previously reported as expression quantitative trait loci (eQTL) in any tissue (P > 5
× 10-8; Supplementary Table 11 and Methods). We used GTEx v7 data to examine in which tissues the genes
closest to the rare BP-SNVs were expressed (Extended Data Fig. 2 and Supplementary Table 4). Many of
the eQTL gene transcripts were expressed in BP-relevant tissues (e.g. kidney, heart, and arteries). We
observed significant enrichment (Bonferroni adjusted P < 0.05) in liver, kidney, heart left ventricle,
pancreas, and brain tissues, where the BP genes were down-regulated. In contrast, the BP genes were up-
regulated in tibial artery, coronary artery, and aorta (Extended Data Fig. 3). There were 33 genes at 30
known loci with novel BP rare variants (from Supplementary Table 12); distinct known common BP variants
at these known loci were eQTLs for 52% of these genes, providing additional evidence that the rare variants
implicate plausible candidate genes (Supplementary Table 12).

We tested whether genes near rare BP-associated SNVs were enriched in gene sets from Gene
Ontology (GO), KEGG, Mouse Genome Informatics (MGI), and Orphanet (Methods and Supplementary



Table 4). These (rare variant) genes from both known and novel loci were enriched in BP-related pathways
(Bonferroni adjusted P < 0.05; Methods and Supplementary Table 13), including “regulation of blood vessel
size” (GO) and “renin secretion” (KEGG). Genes implicated by rare SNVs at known loci were enriched in
“tissue remodeling” and “artery aorta” (GO). Genes implicated by rare SNVs at new BP-loci were enriched
in rare circulatory system diseases (that include hypertension and rare renal diseases) in Orphanet.

 
Potential therapeutic insights from the rare BP-associated SNVs. Twenty-three of the genes near rare or
low-frequency BP-associated variants in novel and known loci were potentially druggable as suggested by
the “druggable genome”30 (Supplementary Information and Supplementary Tables 4 and 14). Six genes (four
with rare variants) are already drug targets for CVD conditions, while 15 others are in development or used
for other conditions. As an example, the renin-angiotensin-aldosterone system (RAAS) is one of
the principal homeostatic mechanisms for BP control, and aldosterone is the main mineralocorticoid
(secreted by adrenal glands) and binds receptors, including NR3C2, resulting in sodium retention by
the kidney and increased potassium excretion. Spironolactone is an aldosterone antagonist widely used in
heart failure and as a potassium-sparing anti-hypertensive medication that targets NR3C2 (Open targets:
https://www.opentargets.org).

 
Overlap of new BP-associations with metabolites. To identify novel BP variants that are metabolite QTLs,
we performed in silico lookups of new sentinel and conditionally independent BP variants for association
with 913 plasma metabolites measured using the Metabolon HD4 platform in ~14,000 individuals (Methods
and Supplementary Table 4). Nine BP-associated variants were associated with 25 metabolites (P < 5 × 10-8)
involved in carbohydrate, lipids, cofactors and vitamins, nucleotide (cysteine), and amino acid metabolism
(Supplementary Table 15), while 11 were unknown.

We performed MR analyses to assess the influence of the 14 known metabolites (Supplementary
Table 15) on BP. Lower levels of 3-methylglutarylcarnitine(2) (acyl carnitines involved in long-chain fatty
acid metabolism in mitochondria and in leucine metabolism) were significantly associated with increased
DBP (P < 0.003, 0.05/14 metabolites; Supplementary Table 16). There was no suggestion of reverse
causation, i.e. BP did not affect 3-methylglutarylcarnitine(2) (P > 0.04; Supplementary Table 16). We further
tested whether the association with 3-methylglutarylcarnitine(2) was due to pleiotropic effects of other
metabolites in a multivariable MR framework, but found it was still causally associated with DBP
(Supplementary Information and Supplementary Table 16).

 
New BP-associated SNVs are gene eQTLs across tissues. Sentinel variants from 66 new BP loci were
associated (P < 5 × 10-8) with gene expression (or had r2 > 0.8 in 1000G EUR with eQTLs) in publicly
available databases (Methods and Supplementary Tables 4 and 11). We performed colocalization for 49 of
the 66 BP loci (169 genes) with significant eQTLs available in GTEx v7, jointly across all 48 tissues and the
BP traits using HyPrColoc31 (Methods), to verify that the eQTL and BP-SNV associations were due to the
same SNVs and not due to LD or spurious pleiotropy32. The BP associations and eQTL colocalized at 17 BP
loci with a single variant (posterior probability, PPa > 0.6), i.e. the expression and BP associations were due
to the same underlying causal SNV (Fig. 3 and Supplementary Table 17). A further 10 loci had PPa > 0.6 for
colocalization of BP associations and eQTL for multiple nearby genes (Fig. 3). Colocalization analyses were
also performed for the 35 eQTLs in whole blood from the Framingham Heart Study, and five additional loci
were consistent with a shared SNV between BP and gene expression (Supplementary Table 17).

Given the central role of the kidney in BP regulation, we investigated if BP-associated SNVs from
the EAWAS were kidney eQTLs using TRANScriptome of renaL humAn TissuE study and The Cancer
Genome Atlas study (n = 285; Methods33,34). We observed significant eQTL associations (P < 5 x 10-8) at
three newly identified BP loci (MFAP2, NFU1, and AAMDC, which were also identified in GTEx) and six at
previously published loci (ERAP1, ERAP2, KIAA0141, NUDT13, RP11-582E3.6, and ZNF100;
Supplementary Table 18).

 
New BP-associated SNVs are pQTLs. Eighteen BP loci had sentinel variants (or were in LD with BP
SNVs, r2 > 0.8 in 1000G EUR) that were also protein QTL (pQTL) in plasma. Across the 18 loci, BP-SNVs
were pQTLs for 318 proteins (Supplementary Table 19). Low-frequency SNVs in MCL1 and LAMA5 were
cis-pQTL for MCL1 and LAMA5, respectively. The BP-associated SNV, rs4660253, is a cis-pQTL and cis-
eQTL for TIE1 across eight tissues in GTEx including heart (Fig. 3 and Supplementary Table 17). The DBP-
associated SNV, rs7776054, is in strong LD with rs9373124, which is a trans-pQTL for erythropoietin, a
hormone mainly synthesized by the kidneys, which has links to hypertension.

 
Pathway and enrichment analyses. The over-representation of rare and common BP SNVs in DNaseI-
hypersensitive sites (DHS), which mark open chromatin, was tested using GARFIELD (Methods and
Supplementary Table 4). The most significant enrichment in DHS hotspots for SBP-associated SNVs was in
fetal heart tissues, with an ~3-fold enrichment compared to ~2-fold in adult heart (Fig. 3 and Supplementary
Information). This difference in enrichment was also reflected in fetal muscle compared to adult muscle for
SBP-associated SNVs. The most significant enrichment for DBP- and PP-associated SNVs (~3-fold) was in
blood vessels (Fig. 3 and Supplementary Information). There was also enrichment across SBP, DBP and PP
in fetal and adult kidney and fetal adrenal gland. In support, complementary enrichment analyses with



FORGE (Methods) showed similar enrichments including in fetal kidney and fetal lung tissues (Z-score =
300; Supplementary Table 13 and Supplementary Information).

 
Mendelian randomization with CVD. Twenty-six new BP loci were also associated with cardiometabolic
diseases and risk factors in PhenoScanner35 (http://www.phenoscanner.medschl.cam.ac.uk) (Methods, Fig. 3,
Supplementary Information, and Supplementary Tables 4, 20, and 21). Given that BP is a key risk factor for
CVD, we performed Mendelian randomization (MR) analyses to assess the causal relationship of BP with
any stroke (AS), ischemic stroke (IS), large artery stroke (LAS), cardio-embolic stroke (CE), small vessel
stroke (SVS), and coronary artery disease (CAD) using all the distinct BP-associated SNVs from our study
(both known and new; Supplementary Table 4 and Methods). BP was a predictor of all stroke types analyzed
and CAD (Fig. 4 and Supplementary Fig. 4). Notably, SBP had the strongest effect on all CVD phenotypes,
with the most profound effect on LAS, increasing risk by >2-fold per SD (Supplementary Table 22). BP had
weakest effect on CE, which may reflect the greater role of atrial fibrillation versus BP in CE risk. Multi-
variable MR analyses, including both SBP and DBP, showed that the effect of DBP attenuated to zero once
SBP was accounted for (consistent with observational studies37), except for LAS (Fig. 4, Supplementary
Table 22, and Methods), where SBP/DBP had a suggestive inverse relationship, perhaps reflecting arterial
stiffening. An inverse relationship between DBP and stroke above age 50 years has also been reported37.

 
Discussion
Unlike most previous BP studies that focused primarily on common variant associations, the novelty of this
investigation is the extensive analysis of rare variants, both individually and in aggregate within a gene.
Many of the new rare variants are located in genes that potentially have a role in BP regulation, as evidenced
by support from existing mouse models (21 genes) and/or have previously been implicated in monogenic
disorders (11 genes) whose symptoms include hyper-/hypotension or impaired cardiac function/development
(Supplementary Table 12). For example, rs139600783 (p.Pro274Ser) was associated with increased DBP
and is located in the ARHGAP31 gene that causes Adams-Oliver syndrome, which can be accompanied by
pulmonary hypertension and heart defects. A further three (of the six) genes that cause Adams-Oliver
syndrome are located in BP-associated loci (DLL416, DOCK613,15, and NOTCH1, a new BP locus). A
missense variant rs200383755 (p.Ser19Trp, predicted deleterious by SIFT), located in the GATA5, encoding
a transcription factor, is associated with increased SBP and DBP. GATA5 mutations cause congenital heart
defects, including bicuspid aortic valve and atrial fibrillation, while a Gata5-null mouse model had
increased SBP and DBP at 90 days38.

Within the known loci, we detected new rare variant associations at several candidate genes, e.g. a
rare missense SNV rs1805090 (MAF = 0.0023) in the angiotensinogen (AGT) gene was associated with
increased BP independently of the known common variant association. AGT is known to have an important
role in BP regulation, and the variant is predicted to be among the top 1% of most deleterious substitutions39.
The established common variant at FOXS1 was not associated with BP in the conditional analysis, but new
rare variants in FOXS1 (rs45499294, p.Glu74Lys; MAF = 0.0037) and MYLK2 (rs149972827; MAF =
0.0036; Supplementary Information) were associated with BP. Two BP-associated SNVs (rs145502455,
p.Ile806Val; rs117874826, p.Glu564Ala) highlight PLCB3 as a candidate gene. Phospholipase C is a key
enzyme in phosphoinositide metabolism, with PLCB3 as the major isoform in macrophages40, and a negative
regulator of VEGF-mediated vascular permeability, a key process in ischemic disease and cancer41. PLCβ3
deficiency is associated with decreased atherogenesis, increased macrophage apoptosis in atherosclerotic
lesions, and increased sensitivity to apoptotic induction in vitro40. Variants in SOS2 have previously been
linked to kidney development/function42 and also cause Noonan syndromes 1 and 9, which are rare inherited
conditions characterized by craniofacial dysmorphic features and congenital heart defects, including
hypertrophic cardiomyopathy43. Here we report the rare variant rs72681869 (p.Arg191Pro) in SOS2 as
associated with SBP, DBP, PP, and HTN, highlighting SOS2 as a candidate gene. Previously, we identified a
rare missense BP-associated variant in RRAS, a gene causing Noonan syndrome13. Our discoveries of rare
missense variants at known BP loci provide additional support for candidate genes at these loci.

We report new low-frequency variant associations, such as the missense variant rs45573936 (T>C,
Ile216Thr) in SLC29A1. The minor allele is associated with both decreased SBP and DBP (Table 1), and the
SNV has been shown to affect the function of the encoded protein, equilibrative nucleoside transporter
(ENT1)44. Best et al.45 showed that loss of function of ENT1 caused an (~2.75-fold) increase in plasma
adenosine and (~15%) lower BP in mice. Drugs, including dipyridamole and S-(4-Nitrobenzyl)-6-
thioinosine (NBTI, NBMPR), are currently used as ENT1 inhibitors for their anti-cancer, anti-cardio, and
neuro-protective properties, and our results provide the genetic evidence to indicate that ENT1 inhibition
might lower BP in humans.    

We found greater enrichment of SBP-associated SNVs in DHS hotspots in fetal vs. adult heart
muscle tissue. These results suggest that BP-associated SNVs may influence the expression of genes that are
critical for fetal development of the heart. This is consistent with our finding that some BP-associated genes
also cause congenial heart defects (see above). Furthermore, de novo mutations in genes with high
expression in the developing heart, as well as in genes that encode chromatin marks that regulate key
developmental genes, have previously been shown to be enriched in congenital heart disease patients46,47. A
recent study of atrial fibrillation genetics, for which BP is a risk factor, described enrichment in DHS in fetal
heart48. The authors hypothesized that the corresponding genes acting during fetal development increase risk



of atrial fibrillation48. Together, these data suggest that early development and/or remodeling of cardiac
tissues may be an important driver of BP regulation later in life.

The BP measures we have investigated here are correlated; amongst the 107 new genetic BP loci,
only two are genome-wide significant across all four BP traits (RP11-284M14.1 and VTN; Fig. 2). None of
the new loci were unique to HTN (Fig. 2), perhaps as HTN is derived from SBP and DBP, or perhaps due to
reduced statistical power for a binary trait. The results from our study indicate rare BP-associated variants
contribute to BP variability in the general population, and their identification has provided information on
new candidate genes and potential causal pathways. We have primarily focused on the exome array, which is
limited. Future studies using both exome and whole genome sequencing in population cohorts (e.g. UKBB
and TOPMed) will lead to identification of further rare variant associations and may advance the
identification of causal BP genes across the ~1,000 reported BP loci.
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FIGURE LEGENDS
Figure 1 | Study design for single variant discovery. a, Exome array-wide association study (EAWAS) of
SBP, DBP, PP and HTN. In Stage 1, we performed two fixed effect meta-analyses for each of the blood
pressure (BP) phenotypes SBP, DBP, PP and HTN: one meta-analysis including 810,865 individuals of
European (EUR) ancestry and a second pan-ancestry (PA) meta-analysis including 870,217 individuals of
EUR, South Asians (SAS), East Asians (EAS), African Ancestry (AA), Hispanics (HIS) and Native
Americans (NAm) (Supplementary Tables 23 and 24; Methods). Summary association statistics for SNVs
with P < 5 × 10-8 in Stage 1 that were outside of previously reported BP loci (Methods, Supplementary
Tables 1 and 25) were requested in independent studies (up to 448,667 participants; Supplementary Table
24). In Stage 2, we performed both a EUR and a PA meta-analyses for each trait of Stage 1 results and
summary statistics from the additional studies. Only SNVs that were associated with a BP trait at P < 5 × 10-

8 in the combined Stage 2 EUR or PA meta-analyses and had concordant directions of effect across studies
(Pheterogeneity > 1 × 10-4; Methods) were considered significant. Further details are provided in the Methods and
Supplementary Information. b, Rare variant GWAS (RV-GWAS) of SBP, DBP and PP. For SNVs outside of
the previously reported BP loci (Methods, Supplementary Tables 1 and 6) with P < 1 × 10-7 in Stage 1,
summary association statistics were requested from MVP (up to 225,112 participants; Supplementary Table
24). In Stage 2, we performed meta-analyses of Stage 1 and MVP for SBP, DBP and PP in EUR. SNVs that
were associated with a BP trait at P < 5 × 10-8 in the combined Stage 2 EUR with concordant directions of
effect across UKBB and MVP (Pheterogeneity >1 × 10-4; Methods) were considered significant. Justification of
the significance thresholds used and further information on the statistical methods are detailed in the
Methods and Supplementary Information. *Total number of participants analyzed within each study that



provided single variant association summaries following the data request—EAWAS EUR: Million Veterans
Program (MVP: 225,113), deCODE (127,478) and GENOA (1,505); EAWAS PA: Million Veterans Program
(MVP: 225,113 EUR; 63,490 AA; 22,802 HIS; 2,695 Nam; 4,792 EAS), deCODE (127,478 participants
from Iceland) and GENOA (1,505 EUR; 792 AA); RV-GWAS EUR: Million Veterans Program (MVP:
225,112 EUR).

 
Figure 2 | New BP associations. a, Fuji plot of the genome-wide significant BP-associated SNVs from the
Stage 2 EAWAS and Stage 2 rare variant GWAS. The first four circles (from inside-out) and the last circle
(locus annotation) summarize pleiotropic effects, while circles 5 to 8 summarize the genome-wide
significant associations. Every dot or square represents a BP-associated locus, and large dots represent novel
BP-associated loci, while small dots represent loci containing novel variants identified in this study, which
are in linkage disequilibrium with a variant reported by Evangelou et al.20 and/or Giri et al.21. All loci are
independent of each other, but due to the scale of the plot, dots for loci in close proximity overlap. *Loci
with rare variant associations. b, Venn diagram showing the overlap of the 107 new BP loci across the
analyzed BP traits. c, Functional annotation from VEP of all the identified rare variants in known and novel
regions. d, Plots of minor allele frequency against effect estimate on the transformed scale for the BP-
associated SNVs. Blue squares are new BP-associated SNVs, black dots represent SNVs at known loci, and
red dots are newly identified distinct BP-associated SNVs at known loci. Effect estimates and SEs for the
novel loci are taken from the Stage 2 EUR analyses (up to 1,164,961 participants), while for the known are
from the Stage 1 analyses (up to 810,865 participants). Results are from the EAWAS where available and the
GWAS (up to 670,472 participants) if the known variants were not on the exome array (data from
Supplementary Tables 1, 3, 7, 8, and 25 were used).

 
Figure 3 | Annotation of BP loci. a, BP associations shared with eQTL from GTEx through multi-trait
colocalization analyses. Expressed gene and the colocalized SNV are provided on the y-axis. BP trait and
eQTL tissues are provided on the x-axis. The color indicates whether the candidate SNV increases BP and
gene expression (brown), decreases BP and gene expression (orange), or has the inverse effects on BP and
gene expression (blue). b, Enrichment of BP-associated SNVs in DNase I hypersensitivity hot spots (active
chromatin). The top plot is for SBP, middle is for DBP, and bottom represents PP. Height of the bar
indicates the fold enrichment in the listed tissues, with error bars representing the 95% confidence intervals.
The colors represent the enrichment P-value.

 
Figure 4 | Phenome-wide associations of the new BP loci. a, Modified Fuji plot of the genome-wide
significant associated SNVs from the Stage 2 EAWAS and Stage 2 rare variant GWAS (novel loci only).
Each dot resents a novel locus where a conditionally independent variant or a variant in LD with the
conditionally independent variant has been previously associated with one or more traits unrelated to blood
pressure, and each circle represents different trait category (Supplementary Table 20). Locus annotation is
plotted in the outer circle, and * sign denotes loci where the conditionally independent signal maps to a gene
which is different to the one closest to the sentinel variant. b, Bar chart showing the distribution of traits (x-
axis) and number of distinct BP-associated variants per trait (y-axis) that the SNVs in a are associated with.
c, Bar chart of the number of traits included in b (y-axis) by trait category (x-axis). The color coding for a
and b is relative to c.  

 
Figure 5 | Causal association of BP with stroke and coronary artery disease. Mendelian randomization
analyses of the effect of blood pressure on stroke and coronary artery disease. a, Univariable analyses. b,
Multivariable analyses (Methods). Analyses were performed using summary association statistics
(Methods). The causal estimates are on the odds ratio (OR) scale (the square in the plot). The whiskers on
the plots are the 95% confidence intervals for these ORs. Results on the standard deviation scale are
provided in Supplementary Table 22. The genetic variants for the estimation of the causal effects in this plot
are sets of SNVs after removing the confounding SNVs and invalid instrumental variant. OR, odds ratio (P-
value from the inverse variance weighted two sample Mendelian randomization method). n, number of
disease cases.
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  Table 1 | Rare and low-frequency SNV-blood pressure associations in participants of European ancestry from the (

EAWAS and (Stage 2) RV-GWAS that map to new BP loci

Locus rsID Chr:Pos Gene EA/OA Amino acids Consequence Trait EAF β P Het 



Exome array-wide association study (EAWAS)         
10 rs11580946 1:150,551,327 MCL1 A/G p.Val227Ala missense PP 0.016 -0.37 2.74x10-9 0.24
11 rs61747728† 1:179,526,214 NPHS2 T/C p.Gln229Arg missense DBP 0.040 0.26 8.74x10-13 0.22
16 rs4149909 1:242,023,898 EXO1 G/A p.Ser279Asn missense SBP 0.033 0.36 2.46x10-8 0.09
32 rs3821033† 2:219,507,302 ZNF142 T/C p.Thr1313Ala missense DBP 0.033 -0.29 1.42x10-13 0.75
 rs16859180† 2:219,553,468 STK36 T/C p.Trp477Arg missense DBP 0.049 -0.26 1.11x10-16 0.34

44 rs145072852 3:101,476,645 CEP97 T/C p.Phe399Leu missense PP 0.004 1.05 1.42x10-13 0.01
46 rs139600783 3:119,109,769 ARHGAP31 T/C p.Ser274Pro missense HTN 0.008 5.85 5.05x10-9 0.19
50 rs73181210 3:169,831,268 PHC3 C/T p.Glu692Lys missense DBP 0.009 -0.66 9.14x10-15 0.04
52 rs11937432† 4:  2,233,709 HAUS3 G/A p.Thr586Ile missense DBP 0.046 0.21 9.56x10-10 0.26
58 rs1229984 4:100,239,319 ADH1B T/C p.His48Arg missense PP 0.026 -0.75 2.97x10-25 0.54
63 rs143057152 4:149,075,755 NR3C2 T/C p.His771Arg missense SBP 0.003 1.75 4.14x10-14 0.22
71 rs61755724 5:132,408,967 HSPA4 A/G p.Thr159Ala missense DBP 0.024 0.26 9.75x10-9 0.36
72 rs33956817 5:137,278,682 FAM13B C/T p.Met802Val missense SBP 0.044 0.31 1.76x10-8 0.27
77 rs34471628† 5:172,196,752 DUSP1 G/A p.His187Tyr missense DBP 0.039 -0.23 3.00x10-10 0.42
85 rs45573936 6: 44,198,362 SLC29A1 C/T p.Ile295Thr missense DBP 0.027 -0.38 3.70x10-19 0.59

100 rs144867634 7:111,580,166 DOCK4 C/T p.Val326Met
missense/splice

region DBP 0.025 -0.26 2.62x10-8 0.04
109 rs56335308† 8: 17,419,461 SLC7A2 A/G p.Met545Val missense DBP 0.025 0.31 1.40x10-10 0.26
114 rs76767219 8: 81,426,196 ZBTB10 A/C p.Glu346Ala missense SBP 0.034 -0.44 4.41x10-13 0.18
119 rs61732533† 8:145,108,151 OPLAH A/G - synonymous DBP 0.049 -0.21 2.05x10-10 0.86

 rs34674752† 8:145,154,222 SHARPIN A/G p.Ser294Pro missense DBP 0.049 -0.19 5.89x10-10 0.91
146 rs117874826 11: 64,027,666 PLCB3 C/A p.Ala564Glu missense SBP 0.014 0.71 4.67x10-12 0.42

 rs145502455 11: 64,031,030 PLCB3 A/G p.Ile806Val missense SBP 0.005 0.90 5.01x10-9 0.04
154 rs141325069 12: 20,769,270 PDE3A A/G p.Gln459Arg missense SBP 0.003 1.45 6.25x10-11 0.82
158 rs77357563 12:114,837,349 TBX5 A/C p.Tyr111Asp missense PP 0.005 -1.01 7.72x10-22 0.22
159 rs13141 12:121,756,084 ANAPC5 A/G p.Val630Ala missense DBP 0.011 0.52 1.98x10-12 0.63
168 rs17880989† 14: 23,313,633 MMP14 A/G p.Ile355Met missense DBP 0.027 0.32 2.02x10-14 0.95
169 rs61754158 14: 31,774,324 HEATR5A T/C p.Arg1670Gly missense SBP 0.009 -0.70 6.28x10-9 0.04

170 rs72681869 14: 50,655,357 SOS2 C/G
p.Arg191Pro

 missense SBP 0.010 -1.22 2.25x10-22 0.25
177 rs150843673 15: 81,624,929 TMC3 T/G p.Ser1045Ter stop/lost DBP 0.021 0.36 1.43x10-12 0.14
181 rs61739285 16: 27,480,797 GTF3C1 T/C p.His1630Arg missense DBP 0.035 0.24 4.71x10-10 0.04
186 rs62051555 16: 72,830,539 ZFHX3 G/C p.His2014Gln missense PP 0.048 0.47 1.19x10-25 0.43
206 rs11699758 20: 60,901,762 LAMA5 T/C p.Ile1757Val missense PP 0.034 -0.26 6.68x10-11 0.54

 rs13039398 20: 60,902,402 LAMA5 A/G p.Trp1667Arg missense PP 0.033 -0.26 1.89x10-10
0.44

Rare variant – genome-wide association study (RV-GWAS)       

215 rs55833332 1:198,222,215 NEK7 G/C p.Gly35Arg missense PP 0.008 0.62 4.58x10-8 0.08
 rs143554274 1:198,455,391 ATP6V1G3 T/C - intergenic PP 0.008 0.71 1.26x10-9 0.14

216 rs12135454 1:219,310,461
LYPLAL1-
AS1 T/C - intron PP 0.010 -0.62 1.61x10-8 0.22

 rs12128471 1:219,534,485
RP11-
392O17.1 A/G - intergenic PP 0.010 -0.68 2.99x10-9 0.19

217 rs114026228 4: 99,567,918 TSPAN5 C/T - intron PP 0.008 -0.65 5.20x10-9 0.03
 rs145441283 4: 99,751,794 EIF4E G/A - intergenic PP 0.010 -0.71 2.01x10-11 0.08

219 rs187207161 6:122,339,304 HMGB3P18 C/T - intergenic PP 0.009 -0.63 2.16x10-10 0.02
221 rs149165710 8:121,002,676 DEPTOR A/G - intron PP 0.003 1.32 2.78x10-12 0.03
222 rs184289122 10:106,191,229 CFAP58 G/A - intron SBP 0.008 1.31 1.66x10-13 0.53

 rs7076147 10:106,250,394
RP11-
127O4.3 G/A - intergenic SBP 0.010 1.11 1.71x10-14 0.75

 rs75337836 10:106,272,188
RP11-
127O4.3 T/G - intergenic SBP 0.010 1.12 2.67x10-15 0.54

 rs142760284 10:106,272,601
RP11-
127O4.3 A/C - intergenic SBP 0.009 1.22 2.19x10-15 0.92

 rs576629818 10:106,291,923
RP11-
127O4.3 T/C - intergenic SBP 0.009 1.24 1.02x10-15 0.71

 rs556058784 10:106,322,283
RP11-
127O4.2 G/A - intergenic SBP 0.009 1.26 4.54x10-16 0.57

 rs535313355† 10:106,399,140 SORCS3 C/T - upstream gene SBP 0.009 1.36 1.04x10-17 0.22



 rs181200083† 10:106,520,975 SORCS3 C/A - intron SBP 0.009 1.60 1.08x10-21 0.58

 rs540369678† 10:106,805,351 SORCS3 T/A - intron SBP 0.010 1.18 2.29x10-14 0.16

 rs117627418 10:107,370,555
RP11-
45P22.2 T/C - intergenic SBP 0.009 1.11 1.98x10-11 0.1

224 rs138656258 14: 31,541,910 AP4S1 G/T - intron SBP 0.007 -0.93 1.15x10-8 0.13
228 rs6061911 20: 60,508,289 CDH4 C/T - intron SBP 0.010 -0.85 4.67x10-8 0.09

 rs114580352 20: 60,529,963 TAF4 A/G - intron SBP 0.009 -0.84 1.99x10-8 0.04
 rs11907239 20: 60,531,853 TAF4 A/G - intron SBP 0.009 -0.82 4.99x10-8 0.05
 rs200383755 20: 61,050,522 GATA5 C/G p.Trp19Ser missense DBP 0.006 1.00 1.01x10-13 0.49

  Newly identified rare and low-frequency SNV-inverse normal transformed blood pressure associations are reported from 
of the exome array study and genome-wide association study. The reported associations are for the trait with the smallest 
in the Stage 1 meta-analysis; the full results are provided in Supplementary Tables 2 and 7. SNVs are ordered by trait,
chromosome, and position. Gene, gene containing the SNV or the nearest gene; rsID, dbSNP rsID; Chr:Pos, Chromosome:NCBI
Build 37 position; EA/OA, effect allele (also the minor allele) and other allele; EAF, effect allele frequency based on Stage 1
Consequence, consequence of the SNV to the transcript as annotated by VEP; Amino acids, reference and variant amino acids
from VEP; Trait, blood pressure trait for which association is reported; β, effect estimate, in mmHg, from the Stage 2 meta-
analysis of the untransformed BP trait or the Z-score from the HTN analyses in Stage 2 ; P, P-value for association with the listed
inverse normal transformed blood pressure trait from the Stage 2 meta-analyses; Het_P, P-value for heterogeneity; n, sample size.
Bold type indicates rare missense variants.

†Novel variants identified in this study that are in linkage disequilibrium (LD: r2 > 0.6 rare SNVs and r2 > 0.1 common SNVs
with a variant that has been reported by Evangelou et al.20 and/or Giri et al.21 within +/- 500 kb of the novel variant.
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Table 2 | Conditionally independent rare and very low-frequency SNV (MAF < 0.02) associations from exome
array at known loci in Stage 1 EUR studies

Locus
ID rsID Chr:bp Gene EA/OA AA Consequence Trait EAF b_joint P_joint n

18 rs116245325 1:
153665650

NPR1  + T/C p.Phe1034Leu Missense SBP 0.001 0.1660 7.49x10-9 758,252

 rs61757359 1:
153658297

 A/G p.Ser541Gly Missense  0.003 -0.0812 6.10x10-9 794,698

 rs35479618
**

1:
153662423

 A/G p.Lys967Glu Missense  0.017 0.0694 1.19x10-28 774,862

28 rs1805090 1:
230840034

AGT  + T/G p.Met392Leu Missense DBP 0.002 0.1070 6.00x10-10 759,349

 rs699 1:
230845794

 G/A p.Thr268Met Missense DBP 0.408 0.0225 2.12x10-45 806,731

94 rs111620813 4: 8293193 HTRA3 + A/G p.Met269Val Missense PP 0.011 -0.0432 1.38x10-8 798,063
 rs7437940

**
4: 7887500 AFAP1 T/C - Intron PP 0.406 -0.0131 1.62x10-16 806,708

102 rs112519623 4:
103184239

SLC39A8 + A/G p.Phe449Leu Missense DBP 0.016 -0.0391 3.02x10-10 803,151

 rs13107325
**

4:
103188709

 T/C p.Thr391Ala Missense DBP 0.072 -0.0615 9.69x10-88 806,731

 rs4699052 4:
104137790

CENPE T/C - Intergenic DBP 0.388 -0.0121 7.31x10-14 806,731

105 rs6825911 4:
111381638

ENPEP T/C - Intron DBP 0.205 -0.0215 1.47x10-28 801,965

 rs33966350 4:
111431444

 A/G p.Ter413Trp Stop/lost DBP 0.013 0.0735 2.40x10-25 798,385

144 rs4712056
**

6: 53989526 MLIP G/A p.Val159Il Missense PP 0.360 0.0091 1.86x10-8 806,708



 rs115079907 6: 55924005 COL21A1 + T/C p.Arg882Gly Missense PP 0.003 0.2060 8.33x10-17 783,546

 rs12209452 6: 55924962  G/A p.Pro821Leu Missense PP 0.049 0.0411 5.49x10-26 743,036
 rs200999181

**
6: 55935568  A/C p.Val665Gly Missense PP 0.001 0.3350 4.74x10-43 764,864

 rs35471617 6: 56033094  A/G p.Met343Thr Missense/splice
region

PP 0.073 0.0249 1.03x10-15 806,708

 rs2764043 6: 56035643  G/A p.Pro277Leu Missense PP 0.002 0.1530 5.11x10-14 785,643
 rs1925153

**
6: 56102780  T/C - Intron PP 0.448 -0.0096 1.03x10-8 786,734

 rs4294007 6: 57512510 PRIM2 T/G - Splice acceptor PP 0.379 0.0096 1.13x10-7 632,625
208 rs507666 9:136149399 ABO A/G - Intron DBP 0.189 -0.0293 7.53x10-47 796,103
 

rs3025343 9:136478355

LL09NC01-
254D11.1

A/G - Exon
(noncoding
transcript)

DBP

0.112 -0.0126 4.91x10-7 806,731
 rs77273740 9:136501728 DBH T/C p.Trp65Arg Missense DBP 0.027 -0.0846 3.85x10-11 790,500
 rs3025380 9:136501756 DBH C/G p.Ala74Gly Missense DBP 0.005 -0.1030 5.37x10-18 795,263
 rs74853476 9:136501834 DBH T/C - Splice donor DBP 0.002 0.1000 3.69x10-8 775,793
223 rs201422605 10:

95993887
PLCE1 G/A p.Val678Met Missense SBP 0.003 -0.0837 1.41x10-7 795,009

 rs11187837 10:
96035980

 C/T - Intron SBP 0.110 -0.0198 4.23x10-14 801,969

 rs17417407 10:
95931087

 T/G p.Leu548Arg Missense SBP 0.167 -0.0122 9.97x10-9 806,735

 rs9419788 10:
96013705

 G/A - Intron SBP 0.387 0.0137 9.63x10-16 806,735

229 rs60889456 11: 723311 EPS8L2 + T/C p.Leu471Pro Missense PP 0.017 0.0303 6.37x10-7 799,021
 rs7126805

**
11: 828916 CRACR2B G/A p.Gln77Arg Missense PP 0.271 -0.0134 1.43x10-13 752,026

246* rs56061986 11:
89182686

NOX4 + C/T p.Gly67Ser Missense PP 0.003 -0.1080 2.25x10-11 798,273

 rs139341533 11:
89182666

 A/C p.Phe97Leu Missense PP 0.004 -0.0947 6.82x10-14 785,947

 rs10765211 11:
89228425

 A/G - Intron PP 0.342 -0.0176 8.77x10-27 806,708

250 rs117249984 11:
107375422

ALKBH8 A/C p.Tyr653Asp Missense SBP 0.019 -0.0304 2.90x10-7 805,695

 rs3758911 11:
107197640

CWF19L2 C/T p.Cys894Tyr
 

Missense SBP 0.341 0.0113 1.54x10-11 806,735

304 rs61738491 16:
30958481

FBXL19 + A/G p.Gln652Arg Missense PP 0.010 -0.0460 1.25x10-8 796,459

 rs35675346
**

16:
30936081

 A/G p.Lys10Glu Missense PP 0.241 -0.0125 1.06x10-11 802,932

130 * rs114280473 5:
122714092

CEP120 + A/G p.Phe712Leu Missense PP 0.006 -0.0584 9.98x10-8 805,632

 rs2303720 5:
122682334

 T/C p.His947Arg Missense PP 0.029 -0.0419 3.44x10-18 806,708

 rs1644318 5:
122471989

PRDM6 C/T - Intron PP 0.387 0.0192 2.43x10-32 790,025

179 * rs3735080 7:
150217309

GIMAP7 T/C p.Cys83Arg Missense DBP 0.237 -0.0092 6.56x10-7 806,731

 rs3807375 7:
150667210

KCNH2 T/C - Intron DBP 0.364 -0.0084 3.94x10-7 806,731

 rs3918234 7:
150708035

NOS3 + T/A p.Leu982Gln Missense DBP 0.004 -0.0727 1.33x10-7 786,541

 rs891511 ** 7:
150704843

 A/G - Intron DBP 0.331 -0.0231 1.56x10-40 778,271

 rs10224002
**

7:
151415041

PRKAG2 G/A - Intron DBP 0.286 0.0186 7.41x10-27 806,731

190 * rs138582164 8: 95264265 GEM + A/G p.Ter199Arg Stop lost PP 0.001 0.2810 1.90x10-17 735,507
195 * rs112892337 8:

135614553
ZFAT + C/G p.Cys470Ser Missense SBP 0.005 -0.0831 4.39x10-12 792,203

 rs12680655 8:
135637337

 G/C - Intron SBP 0.398 0.0118 1.81x10-13 797,982

259 * rs145878042 12:
48143315

RAPGEF3
+

G/A p.Pro258Leu Missense SBP 0.012 -0.0453 9.28x10-10 805,791



 rs148755202 12:
48191247

HDAC7 T/C p.His166Arg Missense SBP 0.016 0.0310 9.07x10-7 806,735

 rs1471997 12:
48723595

H1FNT A/G p.Gln174Arg Missense SBP 0.216 0.0130 1.15x10-11 806,735

 rs1126930
**

12:
49399132

PRKAG1 C/G p.Ser98Thr Missense SBP 0.035 0.0408 1.45x10-21 793,216

 rs52824916
**

12:
49993678

FAM186B T/C p.Gln582Arg Missense SBP 0.088 -0.0155 1.70x10-8 806,735

 rs7302981
**

12:
50537815

CERS5 A/G p.Cys75Arg Missense SBP 0.375 0.0219 1.52x10-41 806,735

312 * rs61753655 17: 1372839 MYO1C + T/C p.Lys866Glu Missense SBP 0.011 0.0653 6.48x10-18 806,735
 rs1885987 17: 2203025 SMG6 G/T p.Thr341Asn Missense SBP 0.371 -0.0127 3.94x10-15 806,735
339 * rs34093919 19:

41117300
LTBP4 + A/G p.Asn715Asp Missense/splice

region
PP 0.014 -0.0631 4.18x10-20 805,764

 rs814501 19:
41038574

SPTBN4 G/A p.Gly1331Ser Missense PP 0.482 -0.0115 2.40x10-13 806,708

346 rs45499294 20:
30433126

FOXS1 + T/C p.Lys74Glu
 

Missense SBP 0.004 -0.0732 2.36x10-8 801,284

GCTA was used to perform conditional analyses of the meta-analysis results from the exome array study
from the Stage 1 meta-analysis of EUR studies in known blood pressure regions (defined in Supplementary
Table 1). All SNVs had P < 0.0001 for heterogeneity. The trait selected in this table is the trait for which the
rare variant had the smallest P-value. We provide all conditionally independent variants at these loci, i.e.
rare, very low frequency (MAF < 0.02), low frequency, and common. The full detailed listing of results is
provided in Supplementary Table 8. Bold font highlights variants with MAF < 0.02. Locus ID, the known
locus identifier used in Supplementary Table 1; Chr:Position, chromosome and NCBI Build 37 physical
position; EA/OA, Effect allele/other allele; AA, amino acid change; Effect, predicted consequence of the
SNV from VEP; EAF, effect allele frequency; �_joint, effect estimate for the SNV in the joint analysis from
GCTA; P_joint, the P-value for association of the rare variant from the joint analysis in GCTA; Gene,
nearest gene; Trait, blood pressure trait analyzed; Ref, reference of the first reports of association in the
listed region.
*Indicates that one or more of the previously reported variants in the locus were not on exome array.
**Indicates that the listed variant is the known variant or its proxy (r

2 
> 0.8 in 1000G EUR).

+Indicates that the listed gene had an unconditional SKAT P-value < 2 x 10
-6
 (see Supplementary Table 9).
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Table 3 | Newly identified independent BP-associated rare SNVs (MAF ≤ 0.01) at known loci in UK Biobank
only

Locus
ID rsID Chr:Position Gene Info EA/O

A Consequence Trait Unconditional SNV
analysis FINEMAP output Ref

        EAF β P-value
Common

SNVs in top
configuration

PP of
n

SNVs
log₁₀BF

5 rs41300100 1:11908146 NPPA 0.82 G/C 5' UTR SBP 0.010 -0.10 4.70x10-21
rs2982373,
rs5066,
rs55892892

0.55 122.50 9,

18 rs756799918 1:153464738 RN7SL44P 0.89 T/C intergenic SBP 0.0004 0.26 4.30x10-7 rs12030242 0.36 27.49 14

28 rs1805090 1:230840034 AGT NA T/G missense SBP 0.0025 0.11 6.80x10-8 rs3889728,
rs2493135 0.79 26.23 8

28 rs539645495 1:230860071 RP11-
99J16__A.2 0.97 G/A

intron, non-
coding

transcript
DBP 0.0024 0.13 3.20x10-9 rs2493135,

rs3889728 0.83 30.97 8

33 rs56152193 2:20925891 LDAH 0.76 C/G intron PP 0.0006 -0.23 8.10x10-7 rs7255 0.36 17.95 17

55 rs759606582 2:178325956 AGPS 0.96 G/A intron PP 0.0003 0.29 1.90x10-7 rs56726187 0.57 7.48 16

72 rs555934473 3:48899332 SLC25A20 0.74 T/G intron DBP 0.0012 -0.17 2.50x10-6
rs36022378,
rs6442105,
rs6787229

0.25 35.71
17
6, 

73 rs76920163 3:53857055 CHDH 0.96 G/T intron SBP 0.0059 0.10 3.80x10-13
rs3821843,
rs7340705,
rs11707607

0.58 29.45 18

 rs144980716 3:53776904 CACNA1D 0.91 A/G intron PP 0.0065 0.07 2.60x10-8 rs36031811,
rs77347777 0.57 18.42  

85 rs547947160 3:141607335 ATP1B3 0.75 G/A intron PP 0.0008 0.20 6.00x10-6 rs6773662 0.54 7.040 13

86 rs545513277 3:143113550 SLC9A9 0.70 A/G intron PP 0.0006 -0.24 6.90x10-6 rs1470121 0.56 11.97 16



92 rs186525102 3:185539249 IGF2BP2 0.85 A/G intron SBP 0.0086 -0.06 6.70x10-7 rs4687477 0.56 8.08 17

94 rs111620813 4:8293193 HTRA3 NA A/G missense PP 0.0100 -0.05 2.00x10-6 rs28734123 0.53 12.54 18

132 rs181585444 5:129963509 AC005741.2 0.83 C/T intergenic DBP 0.0003 -0.30 3.80x10-6 rs274555 0.55 10.70 14

137 rs546907130 6:8156072 EEF1E1 0.90 T/C intergenic SBP 0.0017 -0.14 1.90x10-7 rs3812163 0.70 8.57 16

141 rs72854120 6:39248533 KCNK17 0.91 C/T intergenic SBP 0.0073 -0.08 3.10x10-9 rs2561396 0.76 10.49 16

141 rs72854118 6:39248092 KCNK17 0.91 G/A intergenic DBP 0.0072 -0.07 2.70x10-7 rs1155349 0.85 11.12 16

164 rs138890991 7:40804309 SUGCT 0.94 C/T intron PP 0.0100 0.06 1.60x10-7 rs17171703 0.77 19.08 17

179 rs561912039 7:150682950 NOS3 0.74 T/C intergenic DBP 0.0017 -0.13 6.40x10-6

rs3793341,
rs3918226,
rs6464165,
rs7788497,
rs891511

0.34 81.75 9,

183 rs570342886 8:23380012 SLC25A37 0.85 C/G intergenic DBP 0.0001 -0.48 9.80x10-7 rs7842120 0.58 15.74 16

190 rs201196388 8:95265263 GEM NA T/C splice donor PP 0.0005 0.26 2.40x10-9 rs2170363 0.34 31.80 16

193 rs532252660 8:120587297 ENPP2 0.79 T/C intron DBP 0.0025 -0.11 4.10x10-7 rs7017173 0.81 26.53 6

193 rs181416549 8:120678125 ENPP2 0.84 A/G intron PP 0.0026 0.20 5.10x10-21 rs35362581,
rs80309268 0.95 113.21 6

212 rs138765972 10:20554597 PLXDC2 0.94 C/T intron DBP 0.0075 -0.07 4.40x10-8 rs61841505 0.49 9.06 16

219 rs192036851 10:64085523 RP11-
120C12.3 0.92 C/T intergenic SBP 0.0062 0.06 6.40x10-6 rs10995311 0.28 19.55 16

234 rs150090666 11:14865399 PDE3B NA T/C stop gained DBP 0.0010 -0.16 5.20x10-7 rs11023147,
rs2597194 0.55 12.93 16

242 rs139620213 11:61444612 DAGLA 0.89 T/C upstream
gene PP 0.0019 0.11 5.90x10-6 rs2524299 0.48 6.64 15

246 rs540659338 11:89183302 NOX4 0.85 C/T intron PP 0.0027 -0.14 2.60x10-10 rs2289125,
rs494144 0.62 58.09 17

260 rs186600986 12:53769106 SP1 0.91 A/G upstream
gene PP 0.0030 -0.09 1.10x10-6 rs73099903 0.48 12.91 19

266 rs137937061 12:111001886 PPTC7 0.74 A/G intron SBP 0.0048 -0.09 1.30x10-6

rs9739637,
rs35160901,
rs10849937,
rs3184504

0.34 55.74 16

268 rs190870203 12:123997554 RILPL1 0.85 T/G intron PP 0.0020 0.12 1.70x10-7 rs4759375 0.72 9.50 13

270 rs541261920 13:30571753 RP11-
629E24.2 0.79 G/C intergenic SBP 0.0005 0.24 9.20x10-6 rs7338758 0.54 10.09 16

281 rs149250178 14:100143685 HHIPL1 0.75 A/G 3' UTR DBP 0.0004 -0.29 2.30x10-6 rs7151887 0.51 7.93 16

299 rs139491786 16:2086421 SLC9A3r2 NA T/C missense DBP 0.0068 -0.12 1.60x10-20

rs28590346,
rs34165865,
rs62036942,
rs8061324

0.57 50.80 16

304 rs2234710 16:30907835 BCL7C 0.79 T/G upstream
gene SBP 0.0075 -0.08 2.30x10-9 - 0.52 6.29 17

304* rs148753960 16:31047822 STX4 0.89 T/C intron PP 0.0099 -0.07 1.80x10-9 rs7500719 0.42 12.21 17

317 rs756906294 17:42323081 SLC4A1 0.73 T/C downstream
gene PP 0.0030 0.01 8.30x10-6 rs66838809 0.27 18.94 17

322 rs16946721 17:61106371 TANC2 0.91 G/A intron DBP 0.0100 -0.07 1.40x10-11 rs1867624,
rs4291 0.51 20.91 17

333 rs55670943 19:11441374 RAB3D 0.87 C/T intron SBP 0.0085 -0.10 2.10x10-17

rs12976810,
rs4804157,
rs160838,
rs167479

0.78 85.45

13-15

346* rs149972827 20:30413439 MYLK2 0.98 A/G intron SBP 0.0036 -0.10 6.20x10-9 - 0.85 9.86 16

362 rs115089782 22:42329632 CENPM 0.93 T/C intergenic SBP 0.0001 0.53 4.20x10-6 rs139919 0.44 14.12 17

               
FINEMAP25 was used to identify the most likely causal variants within the known loci (defined in
Supplementary Table 1) using the BOLT-LMM results in UKBB, the full detailed listing of results is
provided in Supplementary Table 8. Locus ID, the known locus identifier provided in Supplementary Table
1; Chr:Position, chromosome and physical position in Build 37; Info, imputation information score, NA
indicates that the SNV was genotyped and not imputed; EA/OA, Effect allele and other allele, respectively;
AA, amino acid change; Effect, predicted effect of the listed SNV; EAF, effect allele frequency; �, single
variant effect estimate for the rare variant in the BOLT-LMM analysis; P-value, the single variant P-value
from the mixed model in the BOLT-LMM analysis; PP of n SNVs, the posterior probability of the number of
causal variants; Log10BF, log10 Bayes factor for the top configuration; Gene, nearest gene; Trait, blood
pressure trait analyzed; Ref, reference of the first reports of association in the listed region.
rs540659338 identified in UK Biobank in NOX4 has r2 = 1 in 1000G EUR with rs56061986 identified in the



GCTA analysis in Table 4.
*Variants at these loci are in LD with GCTA variants (Table 2): at locus 304, r2 = 0.876 between
rs148753960 and rs61738491; at locus 346, r2 = 0.952 between rs149972827 and rs45499294. ​
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Online Methods
 
The statistical methods used and analytical packages used are further detailed in the Life Sciences Reporting
Summary.

 
Participants. The cohorts contributing to Stage 1 of the EAWAS comprised 92 studies from four consortia
(CHARGE, CHD Exome+, GoT2D:T2DGenes, ExomeBP), and UK Biobank (UKBB) totalling 870,217
individuals of European (EUR, n = 810,865), African Ancestry (AA, n = 21,077), South Asian (SAS, n =
33,689), and Hispanic (HIS, n = 4,586) ancestries. Study-specific characteristics, sample quality control and
descriptive statistics for the new studies are provided in Supplementary Tables 23 and 24 (and in
Supplementary Table 1 and 2 of Surendran et al.13 (https://media.nature.com/original/nature-
assets/ng/journal/v48/n10/extref/ng.3654-S2.xlsx) and Supplementary Table 20 of Liu et al.14

(https://media.nature.com/original/nature-assets/ng/journal/v48/n10/extref/ng.3660-S1.pdf) for the
previously published studies).

For EAWAS, summary association statistics were requested (for the SNVs with P < 5 × 10-8, outside
of known BP loci) from the following cohorts: 127,478 Icelanders from deCODE; 225,113 EUR, 63,490
AA, 22,802 HIS, 2,695 NAm (Native Americans), and 4,792 EAS (East Asians) from the Million Veterans
Program (MVP); and 1,505 EUR and 792 AA individuals from the Genetic Epidemiology Network of
Arteriopathy (GENOA). In total, following the data request, 448,667 individuals of EUR (n = 354,096), AA
(n = 63,282), HIS (n = 22,802), NAm (n = 2,695), and EAS (n = 4,792) ancestries were available for meta-
analyses with Stage 1. Study specific characteristics are provided in Supplementary Tables 23 and 24.

Stage 1 of the RV-GWAS used data from 445,360 EUR individuals from UKBB (Supplementary
Tables 23 and 24, Supplementary Information), and rare variants were followed up in a data request
involving 225,112 EUR individuals from MVP.

All participants provided written informed consent, and the studies were approved by their local
research ethics committees and/or institutional review boards. The BioVU biorepository performed DNA
extraction on discarded blood collected during routine clinical testing, and linked to de-identified medical
records.

 
Phenotypes. SBP, DBP, PP and HTN were analyzed. Details of the phenotype measures for the previously
published studies can be found in the Supplementary Information of the Surendran et al. and Liu et al.
papers (https://media.nature.com/original/nature-assets/ng/journal/v48/n10/extref/ng.3654-S2.xlsx;
https://media.nature.com/original/nature-assets/ng/journal/v48/n10/extref/ng.3660-S1.pdf), and further
details of the additional studies are provided in Supplementary Table 24 and Supplementary Information.
Typically, the average of two baseline measurements of SBP and DBP were used. For individuals known to
be taking BP-lowering medication, 15 and 10 mmHg were added to the raw SBP and DBP values,
respectively, to obtain medication-adjusted values49. PP was defined as SBP minus DBP after medication
adjustment. For HTN, individuals were classified as hypertensive cases if they satisfied at least one of the
following criteria: (i) SBP ≥ 140 mmHg, (ii) DBP ≥ 90 mmHg, or (iii) use of antihypertensive or BP-
lowering medication. All other individuals were considered controls. Further information on study-specific
BP measurements is provided in Supplementary Table 24. Residuals from the null model obtained after
regressing the medication-adjusted trait on the covariates (age, age2, sex, BMI, principal components (PCs)
to adjust for population stratification, in addition to any study-specific covariates) within a linear regression
model were ranked and inverse normalized (Supplementary Information).

 
Genotyping. The majority of the studies were genotyped using one of the Illumina HumanExome BeadChip
arrays (Supplementary Table 24). An exome chip quality control standard operating procedure (SOP:
https://ruderd02.u.hpc.mssm.edu/Exome-chip-QC.pdf) developed by A. Mahajan, N.R.R. and N.W.R. at the
Wellcome Trust Centre for Human Genetics, University of Oxford was used by some studies for genotype
calling and quality control, while the CHARGE implemented an alternative approach50 (Supplementary
Table 24 and Supplementary Tables 3 and 21, respectively, of Surendran et al.13 and Liu et al.14). All
genotypes were aligned to the plus strand of the human genome reference sequence (build 37) before any
analyses and any unresolved mappings were removed. UKBB, MVP, and deCODE were genotyped using
GWAS arrays (Supplementary Table 24).

 
Exome array meta-analyses. Study-specific analyses were performed to test for the association of 247,315
SNVs with SBP, DBP, PP and HTN in 810,865 individuals of European ancestry (75 EUR studies) and
additionally in 59,352 individuals of non-European ancestry comprising of SAS (5 studies), AA (10 studies),
and HIS (2 studies) individuals (Supplementary Information). Study-specific association summaries were
meta-analyzed in Stage 1 using an inverse-variance-weighted fixed-effect meta-analyses implemented in



METAL52. Fixed effect and random effects meta-analyses showed concordant results (Supplementary Table
2). For the binary trait (HTN), we performed sample-size-weighted meta-analysis.

Minimal inflation in the association test statistic, λ, was observed (λ = 1.18 for SBP, 1.20 for DBP,
1.18 for PP, and 1.18 for HTN in the EUR meta-analyses; and λ = 1.19 for SBP, 1.20 for DBP, 1.18 for PP,
and 1.16 for HTN in the PA meta-analyses). The meta-analyses were performed independently at three
centres, and results were found to be concordant across the centres.
Following Stage 1, SNVs outside of known BP-associated regions with P < 5 × 10-8 were looked up in
individuals from the MVP, deCODE, and GENOA studies (data request). Two meta-analyses of the three
additional studies for each trait were performed by two independent analysts, one involving EUR individuals
(354,096 participants) only and one PA (448,667 participants). Likewise, two Stage 2 meta-analyses for each
trait were performed by two independent analysts, one EUR (1,167,961 participants) and one PA (1,318,884
participants). SNVs with (a conservative) P < 5 × 10-8 in the Stage 2 meta-analysis, with consistent
directions of effect in Stage 1 and data request studies and no evidence of heterogeneity (P > 0.0001), were
considered potentially novel53.

 
RV-GWAS. Rare SNVs with P < 5 × 10-8 (a widely accepted significance threshold54,55) in the inverse
variance-weighted meta-analysis of UKBB and MVP, with consistent directions of effect in Stage 1 and
MVP and no evidence of heterogeneity (P > 0.0001), were considered potentially novel.

 
Quality control. As part of the sample QC, plots comparing inverse of the standard error as a function of
the square root of study sample size for all studies were manually reviewed for each trait, and phenotype-
specific study outliers were excluded. In addition, inflation of test static was manually reviewed for each
study and for each phenotype and confirmed minimal or no inflation prior to Stage 1 meta-analyses. For
EAWAS and RV-GWAS, we performed our own QC for genotyped variants as we were specifically
interested in rare variants and knew that these were most vulnerable to clustering errors. Full details of
UKBB QC are provided in the Supplementary Note. To ensure that the variants we reported are not
influenced by technical artefacts and not specific to a certain ancestry, we ensured that there was no
heterogeneity and also that the variants had consistent direction of effects between Stage 1 and the data
request studies (MVP+deCODE+GENOA). In addition, we ensured that the association was not driven by a
single study. For variants reported in RV-GWAS and EAWAS, we reviewed the cluster plots for clustering
artefacts and removed poorly clustered variants. Lastly, for RV-GWAS, if the variant was available in
UKBB whole exome data (~50K individuals), we ensured that the minor allele frequencies were consistent
with the imputed MAF despite restricting the reporting of only variant with a good imputation quality
(INFO > 0.8).

 
Definition of known loci. For each known variant, pairwise LD was calculated between the known variant
and all variants within the 4-Mb region in the 1000 Genomes phase 3 data restricted to samples of European
(EUR) ancestry. Variants with r2 > 0.1 were used to define a window around the known variant. The region
start and end were defined as the minimum position and maximum position of variants in LD within the
window (r2 > 0.1), respectively. Twelve variants were not in 1000 Genomes, and for these variants, a ±500-
kb window around the known variant was used. The window was extended by a further 50 kb and
overlapping regions were merged (Supplementary Table 1).  

 
Conditional analyses. Within the new BP loci, we defined a region based on LD (Supplementary Table 1)
within which conditional analysis was performed (five variants were not in the 1000G panel, and for these
we established a ±500-kb window definition). Conditional and joint association analysis as implemented in

Genome-wide Complex Trait Analysis (GCTA v1.91.4)22 was performed using the EAWAS results to
identify independent genetic variants associated with BP traits within newly identified and known regions
available in the exome array. We restricted this analysis to the summary data from Stage 1 EUR EAWAS
meta-analyses (n = 810,865) as LD patterns were modelled using individual level genotype data from 57,718
EUR individuals from the CHD Exome+ consortium. Variants with Pjoint < 1 × 10-6 were considered
conditionally independent.

We used the UKBB GWAS results and FINEMAP25 v1.1 to fine-map the known BP-associated
regions in order to identify rare variants that are associated with BP independently of the known common
variants (Supplementary Note; due to lack of statistical power, we did not use UKBB GWAS data alone to
perform conditional analyses within the new EAWAS loci). For each known region, we calculated pairwise
Pearson correlation for all SNVs within a 5-Mb window of the known SNVs using LDstore v1.1. Z-scores
calculated in the UKBB single-variant association analyses were provided as input to FINEMAP along with
the correlation matrix for the region. We selected the configuration with the largest Bayes Factor (BF) and
largest posterior probability as the most likely causal SNVs. We considered causal SNVs to be significant if
the configuration cleared a threshold of log10BF > 5 and if the variants in the configuration had an
unconditional association of P ≤ 1 × 10-6. We examined the validity of the SNVs identified for the most
likely configuration by checking marginal association P-values and LD (r2) within UKBB between the
selected variants. For loci that included rare variants identified by FINEMAP, we validated the selected



configuration using a linear regression model in R.

 
Gene-based tests. Gene-based tests were performed using the sequence kernel association test (SKAT)26 as
implemented in the rareMETALS package version 7.1 (https://genome.sph.umich.edu/wiki/RareMETALS)
(which allows for the variants to have different directions and magnitudes of effect) to test whether rare
variants in aggregate within a gene are associated with BP traits. For the EAWAS, two gene-based meta-
analyses were performed for inverse-normal transformed DBP, SBP, and PP, one of EUR and a second PA
including all studies with single-variant association results and genotype covariance matrices (up to 691,476
and 749,563 individuals from 71 and 88 studies were included in the EUR and PA gene-based meta-
analyses, respectively).

In UKBB, we considered summary association results from 364,510 unrelated individuals only. We
annotated all SNVs on the exome array using VEP27. A total of 15,884 (EUR) and 15,997 genes (PA) with
two or more variants with MAF ≤ 0.01 annotated with VEP as high or moderate effects were tested. The
significance threshold was set at P < 2.5 × 10-6 (Bonferroni adjusted for ~20,000 genes).

A series of conditional gene-based tests were performed for each significant gene. To verify the gene
association was due to more than one variant (and not due to a single sub-genome-wide significance
threshold variant), gene tests were conditioned on the variant with the smallest P-value in the gene (top
variant). Genes with Pconditional < 1 × 10-4 were considered significant, which is in line with locus-specific
conditional analyses used in other studies56. In order to ensure that gene associations located in known or
newly identified BP regions (Supplementary Note and Supplementary Table 1) were not attributable to
common BP-associated variants, analyses were conditioned on the conditionally independent known/novel
common variants identified using GCTA within the known or novel regions, respectively, for the EAWAS
(or identified using FINEMAP for the GWAS). Genes mapping to either known or novel loci with Pconditional <
1 × 10-5, were considered significant. The P-value to identify gene-based association not driven by a single
variant was set in advance of performing gene-based tests and was based on an estimation of the potential
number of genes that could be associated with BP.

 
Mendelian randomization with CVDs. We used two-sample MR to test for causal associations between BP
traits and any stroke (AS), any ischemic stroke (IS), large artery stroke (LAS), cardioembolic stroke (CE),
small vessel stroke (SVS), and coronary artery disease (CAD). All the new and known BP-associated SNVs
(including conditionally independent SNVs) listed in Supplementary Tables 2, 3, 5, 7 and 8, were used as
instrumental variables (IVs). In addition to trait specific analyses, we performed an analysis of “generic” BP,
in which we used the SNVs associated with any of the traits. Where variants were associated with multiple
BP traits, we extracted the association statistics for the trait with the smallest P-value (or the largest
posterior probability for the known loci). To exclude potentially invalid (pleiotropic) genetic instruments, we
used PhenoScanner35 to identify SNVs associated with CVD risk factors, cholesterol
(LDL/HDL/triglycerides (TG)), smoking, type 2 diabetes (T2D) and atrial fibrillation (AF) (Supplementary
Table 22) and removed these from the list of IVs. We extracted estimates for the associations of the selected
instruments with each of the stroke subtypes from the MEGASTROKE PA GWAS results (67,162 cases;
454,450 controls)63 and from a recent GWAS for CAD64.  We applied a Bonferroni correction (P < 0.05/6 =
0.0083) to account for the number of CVD traits.
We used the inverse-variance weighting method with a multiplicative random-effects because we had
hundreds of IVs for BP65. We performed MR-Egger regression, which generates valid estimates even if not
all the genetic instruments are valid, as long as the Instrument Strength Independent of Direct Effect
assumption holds66. We note that MR-Egger has been shown to be conservative66, but has the useful property
that the MR-Egger-intercept can give an indication of (unbalanced) pleiotropy, which allowed us to test for
pleiotropy amongst the IVs. We used MR-PRESSO to detect outlier IVs67. To assess instrument strength, we
computed the F-statistic68 for the association of genetic variants with SBP, DBP and PP, respectively
(Supplementary Information and Supplementary Table 22). We also assessed heterogeneity using the Q-
statistic. Although these methods may have different statistical power, the rationale is that, if these methods
give a similar conclusion regarding the association of BP and CVD, then we are more confident in inferring
that the positive results are unlikely to be driven by violation of the MR assumptions69.  

Moreover, we used multivariable MR (mvMR) to estimate the effect of multiple variables on the
outcome65,70. This is useful when two or more correlated risk factors are of interest, e.g. SBP and DBP, and
may help to understand whether both risk factors exert a causal effect on the outcome, or whether one exerts
a leading effect on the outcome. Thus, we used multiple genetic variants associated with SBP and DBP to
simultaneously estimate the causal effect of SBP and DBP on CVDs.  

All analyses were performed using R version 3.4.2 with R packages ‘TwoSampleMR’ and
‘MendelianRandomization’ and “MRPRESSO”.

 
Metabolite quantitative trait loci and Mendelian randomization analyses. Plasma metabolites were
measured in up to 8,455 EUR individuals from the INTERVAL study71,72 and up to 5,841 EUR individuals
from EPIC-Norfolk73 using the Metabolon HD4 platform. In both studies, 913 metabolites passed QC and
were analyzed for association with ~17 million rare and common genetic variants. Genetic variants were
genotyped using the Affymetrix Axiom UK Biobank array and imputed using the UK10K+1000Genomes or



the HRC reference panel. Variants with INFO > 0.3 and MAC > 10 were analyzed. Phenotypes were log-
transformed within each study, and standardized residuals from a linear model adjusted for study-specific
covariates were calculated prior to the genetic analysis. Study-level genetic analysis was performed using
linear mixed models implemented in BOLT-LMM to account for relatedness within each study, and the
study-level association summaries were meta-analyzed using METAL prior to the lookup of novel BP
variants for association with metabolite levels. 

The same methodology for MR analyses as implemented for CVDs was also adopted to test the
effects of metabolites on BP. Causal analyses were restricted to the list of 14 metabolites that overlapped our
BP-associations and were known. We used a Bonferroni significance threshold (P < 0.05/14 = 0.0036),
adjusting for the number of metabolites being tested. We also tested for a reverse causal effect of BP on
metabolite levels. The IVs for the BP traits were the same as those used for MR with CVDs. For the mvMR
analysis of metabolites with BP, we included 3-methylglutarylcarnitine(2) and the three metabolites that
shared at least one IV with 3-methylglutarylcarnitine(2) in the mvMR model. A union set of genetic IVs for
all the metabolites were used in the mvMR model to simultaneously estimate the effect size of each
metabolite on DBP.

 
Colocalization of BP associations with eQTLs. Details of kidney-specific eQTL are provided in
Supplementary Information. Using the phenoscanner lookups to prioritize BP regions with eQTLs in GTEx
version 7, we performed joint colocalization analysis with the HyPrColoc package in R31

(https://github.com/jrs95/hyprcoloc; regional colocalization plots, https://github.com/jrs95/gassocplot).
HyPrColoc approximates the COLOC method developed by Giambartolomei et al.62 and extends it to allow
colocalization analyses to be performed jointly across many traits simultaneously and pinpoint candidate
shared SNV(s). Analyses were restricted to SNVs present in all the datasets used (for GTEx data this was 1
Mb upstream and downstream of the center of the gene probe), data were aligned to the same human
genome build 37 and strand, and a similar prior structure as the colocalization analysis with cardiometabolic
traits was used (= 0.0001 and = 0.99).

 
Gene set enrichment analyses. In total, 4,993 GO biological process, 952 GO molecular function, 678 GO
cellular component, 53 GTEx, 301 KEGG, 9537 MGI, and 2645 Orphanet gene sets were used for
enrichment analyses (Supplementary Information).

We restricted these analyses to the rare BP-associated SNVs (Supplementary Table 4). For each set
of gene sets, the significance of the enrichment of the genetically identified BP genes was assessed as the
Fisher’s exact test for the over-abundance of BP genes in the designated gene set based on a background of
all human protein coding genes or, in the case of the MGI gene sets, a background of all human protein-
coding genes with an available knock-out phenotype in the MGI database.

Results were deemed significant if after multiple testing correction for the number of gene sets in the
specific set of gene sets the adjusted P-value < 0.05. Results were deemed suggestive if the adjusted P-value
was between 0.05 and 0.1.

 
Functional enrichment using BP-associated variants. To assess enrichment of GWAS variants associated
with the BP traits in regulatory and functional regions in a wide range of cell and tissue types, we used
GWAS Analysis of Regulatory or Functional Information Enrichment with LD Correction (GARFIELD).
The GARFIELD method has been described extensively elsewhere76,77. In brief, GARFIELD takes a non-
parametric approach that requires GWAS summary statistics as input. It performs the following steps: (i)
LD-pruning of input variants; (ii) calculation of the fold enrichment of various regulatory/functional
elements; and (iii) testing these for statistical significance by permutation testing at various GWAS
significance levels, accounting for MAF, the distance to the nearest transcription start site, and the number
of LD proxies of the GWAS variants. We used the SNVs from the full UKBB GWAS of BP traits as input to
GARFIELD (Supplementary Table 4).

 
Data availability
Summary association results for all the traits are available for download from:
https://app.box.com/s/1ev9iakptips70k8t4cm8j347if0ef2u
and from the CHARGE dbGaP Summary site, (https://www.ncbi.nlm.nih.gov/gap/) accession number
phs000930.
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