16 research outputs found

    Production of pions, kaons and protons in pp collisions at s=900\sqrt{s}=900 GeV with ALICE at the LHC

    Get PDF
    The production of π+\pi^+, π\pi^-, K+K^+, KK^-, p, and pbar at mid-rapidity has been measured in proton-proton collisions at s=900\sqrt{s} = 900 GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum (pTp_{\rm T}) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from pTp_{\rm T} = 100 MeV/cc to 2.5 GeV/cc. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean pTp_{\rm T} are compared with previous measurements, and the trends as a function of collision energy are discussed.Comment: 24 pages, 18 captioned figures, 5 tables, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    CERN-MEDICIS: A Unique Facility for the Production of Non-Conventional Radionuclides for the Medical Research

    No full text
    The MEDICIS facility is a unique facility located at CERN dedicated to the production of non-conventional radionuclides for research and development in imaging, diagnostics and radiation therapy. It exploits in a Class A work sector, a dedicated isotope separator beam line, a target irradiation station at the 1.4 GeV Proton Synchroton Booster (PSB) and receives activated targets from external institutes during CERN Long Shut-Downs. The target is heated up at high temperatures to allow for the diffusion and effusion of the atoms out of the target that are subsequently ionized. The ions are accelerated and sent through an off-line mass separator. The radionuclide of interest is extracted through mass separation and implanted into a thin metallic collection foil. After collection, the batch is prepared to be dispatched to a research center. In the near-future, the radiochemistry process will also be performed in MEDICIS. Since its commissioning in December 2017, the facility has provided novel radionuclides such as Tb-149, Tb-155, Tm-165, Er-169 and Yb-175 with high specific activity, some for the first time, to European research institutes part of the collaboration

    CERN-MEDICIS: A Review Since Commissioning in 2017

    Get PDF
    The CERN-MEDICIS (MEDical Isotopes Collected from ISolde) facility has delivered its first radioactive ion beam at CERN (Switzerland) in December 2017 to support the research and development in nuclear medicine using non-conventional radionuclides. Since then, fourteen institutes, including CERN, have joined the collaboration to drive the scientific program of this unique installation and evaluate the needs of the community to improve the research in imaging, diagnostics, radiation therapy and personalized medicine. The facility has been built as an extension of the ISOLDE (Isotope Separator On Line DEvice) facility at CERN. Handling of open radioisotope sources is made possible thanks to its Radiological Controlled Area and laboratory. Targets are being irradiated by the 1.4 GeV proton beam delivered by the CERN Proton Synchrotron Booster (PSB) on a station placed between the High Resolution Separator (HRS) ISOLDE target station and its beam dump. Irradiated target materials are also received from external institutes to undergo mass separation at CERN-MEDICIS. All targets are handled via a remote handling system and exploited on a dedicated isotope separator beamline. To allow for the release and collection of a specific radionuclide of medical interest, each target is heated to temperatures of up to 2,300°C. The created ions are extracted and accelerated to an energy up to 60 kV, and the beam steered through an off-line sector field magnet mass separator. This is followed by the extraction of the radionuclide of interest through mass separation and its subsequent implantation into a collection foil. In addition, the MELISSA (MEDICIS Laser Ion Source Setup At CERN) laser laboratory, in service since April 2019, helps to increase the separation efficiency and the selectivity. After collection, the implanted radionuclides are dispatched to the biomedical research centers, participating in the CERN-MEDICIS collaboration, for Research & Development in imaging or treatment. Since its commissioning, the CERN-MEDICIS facility has provided its partner institutes with non-conventional medical radionuclides such as Tb-149, Tb-152, Tb-155, Sm-153, Tm-165, Tm-167, Er-169, Yb-175, and Ac-225 with a high specific activity. This article provides a review of the achievements and milestones of CERN-MEDICIS since it has produced its first radioactive isotope in December 2017, with a special focus on its most recent operation in 2020

    Inclusive negative particle pT spectra in p-nucleus and nucleus-nucleus collisions at 200-GeV per nucleon

    No full text
    The HELIOS experiment has measured inclusivep ⊥ spectra of negative particles in the rapidity region 1.0 is found to be approximately constant up to the highest accessible values of E ⊥
    corecore