105 research outputs found

    Assessment of Sleep Disturbances and Exhaustion in Mothers of Children With Atopic Dermatitis.

    Get PDF
    Importance: The well-being and development of children is strongly influenced by parents' physical and psychosocial health. Data from small, clinic-based studies suggest that sleep loss may be common in parents of children with atopic dermatitis (AD), but longitudinal population-based studies are lacking. Objectives: To compare sleep disturbances over time between mothers of children with and without AD and to determine whether these disturbances are associated with the child's disease severity and the child's sleep disturbances. Design, Setting, and Participants: In the ongoing Avon Longitudinal Study of Parents and Children, all pregnant women residing in Avon, United Kingdom, with an expected delivery date between April 1, 1991, and December 31, 1992, were recruited. Analyses for this study, a secondary analysis of this cohort, were performed from September 2017 to September 2018. Mother-child pairs were followed up with a time-varying measure of child AD activity and severity and self-reported maternal sleep measures repeated at multiple time points between child ages 6 months and 11 years. Main Outcomes and Measures: Time-varying binary measures of maternal sleep duration (<6 vs ≄6 hours per night), difficulty falling asleep, early morning awakening, subjectively insufficient sleep, and daytime exhaustion. Results: The study followed up 13 988 mother-child pairs from birth for a median duration of 11 (interquartile range, 7-11) years. Among the cohort, 11 585 of 13 972 mothers (82.9%) were aged 21 to 34 years and 12 001 of 12 324 (97.4%) were of white race/ethnicity; 7220 of 13 978 children (51.7%) were male. Sleep duration (adjusted odds ratio [AOR], 1.09; 95% CI, 0.90-1.32) and early morning awakenings (AOR, 1.16; 95% CI, 0.93-1.46) were similar between mothers of children with and without AD. In contrast, mothers of children with AD were more likely to report difficulty falling asleep (AOR, 1.36; 95% CI, 1.01-1.83), subjectively insufficient sleep (AOR, 1.43; 95% CI, 1.24-1.66), and daytime exhaustion (AOR, 1.41; 95% CI, 1.12-1.78) independent of the child's comorbid asthma and/or allergic rhinitis. For all measures, worse child AD severity was associated with worse maternal sleep outcomes. The magnitude and significance of the associations were largely unchanged after adjustment for child sleep disturbances. Conclusions and Relevance: Mothers of children with AD reported difficulty falling asleep, subjectively insufficient sleep, and daytime exhaustion throughout the first 11 years of childhood. However, child sleep disturbances did not fully explain maternal sleep disturbances, and future research should investigate other mechanisms. In caring for children with AD, clinicians should consider maternal sleep disturbances and caregiver fatigue

    Association of Atopic Dermatitis With Sleep Quality in Children.

    Get PDF
    Importance: Pruritus, a hallmark of atopic dermatitis (AD), is thought to disrupt sleep, yet little is known about how variations in disease activity and severity of this common childhood condition may be associated with sleep patterns over time. Objective: To determine whether children with active AD have impaired sleep duration and quality at multiple time points throughout childhood and whether disease severity affects sleep outcomes. Design, Setting, and Participants: This longitudinal cohort study used data of children enrolled in the Avon Longitudinal Study of Parents and Children, a population-based birth cohort in Avon, United Kingdom. Participants were children (N = 13 988) alive at 1 year and followed up with repeated measures of self-reported AD and sleep through 16 years of age. This study was based on data collected from 1990 to 2008. Data analysis was performed from September 2017 to September 2018. Main Outcomes and Measures: Standardized measure of sleep duration and composite measure of sleep quality, including nighttime awakenings, early morning awakenings, difficulty falling asleep, and nightmares, were repeated at multiple time points between 2 and 16 years of age. Results: The study sample comprised 13 988 children (7220 male [51.6%]) followed up for a median (interquartile range [IQR]) duration of 11 (5-14) years. Of this total, 4938 children (35.3%) met the definition of having atopic dermatitis between 2 and 16 years of age. Total sleep duration was similar between children with active AD and without AD at all ages, and the average estimated difference across childhood was a clinically negligible difference of 2 minutes less per day for children with AD (95% CI, -4 to 0 minutes). In contrast, children with active AD were more likely to report worse sleep quality at all time points, with a nearly 50% higher odds of experiencing more sleep-quality disturbances (adjusted odds ratio [aOR], 1.48; 95% CI, 1.33 to 1.66). Children with more severe active disease (quite bad or very bad AD: aOR, 1.68; 95% CI, 1.42 to 1.98) and with comorbid asthma or allergic rhinitis (aOR, 1.79; 95% CI, 1.54 to 2.09) had worse sleep quality. However, even children with mild AD (OR, 1.40; 95% CI, 1.27 to 1.54) or inactive AD (OR, 1.41; 95% CI, 1.28 to 1.55) had statistically significantly increased odds of impaired sleep quality. Conclusions and Relevance: Atopic dermatitis appeared to be associated with impaired sleep quality throughout childhood; thus, it is suggested that clinicians should consider sleep quality among all children with AD, especially those with comorbid asthma or allergic rhinitis and severe disease, and that interventions to improve sleep quality are needed

    Species-Specific Transcriptional Regulation of Genes Involved in Nitric Oxide Production and Arginine Metabolism in Macrophages

    Get PDF
    Activated mouse macrophages metabolize arginine via NO synthase (NOS2) to produce NO as an antimicrobial effector. Published gene expression datasets provide little support for the activation of this pathway in human macrophages. Generation of NO requires the coordinated regulation of multiple genes. We have generated RNA-sequencing data from bone marrow–derived macrophages from representative rodent (rat), monogastric (pig and horse), and ruminant (sheep, goat, cattle, and water buffalo) species, and analyzed the expression of genes involved in arginine metabolism in response to stimulation with LPS. In rats, as in mice, LPS strongly induced Nos2, the arginine transporter Slc7a2, arginase 1 (Arg1), GTP cyclohydrolase (Gch1), and argininosuccinate synthase (Ass1). None of these responses was conserved across species. Only cattle and water buffalo showed substantial NOS2 induction. The species studied also differed in expression and regulation of arginase (ARG2, rather than ARG1), and amino acid transporters. Variation between species was associated with rapid promoter evolution. Differential induction of NOS2 and ARG2 between the ruminant species was associated with insertions of the Bov-A2 retrotransposon in the promoter region. Bov-A2 was shown to possess LPS-inducible enhancer activity in transfected RAW264.7 macrophages. Consistent with a function in innate immunity, NO production and arginine metabolism vary greatly between species and differences may contribute to pathogen host restriction

    A Csf1r-EGFP transgene provides a novel marker for monocyte subsets in sheep

    Get PDF
    Expression of Csf1r in adults is restricted to cells of the macrophage lineage. Transgenic reporters based upon the Csf1r locus require inclusion of the highly conserved Fms-intronic regulatory element for expression.We have created Csf1r-EGFP transgenic sheep via lentiviral transgenesis of a construct containing elements of the mouse Fms-intronic regulatory element and Csf1r promoter. Committed bone marrow macrophage precursors and blood monocytes express EGFP in these animals. Sheep monocytes were divided into three populations, similar to classical, intermediate, and nonclassical monocytes in humans, based upon CD14 and CD16 expression. All expressed EGFP, with increased levels in the nonclassical subset. Because Csf1r expression coincides with the earliest commitment to the macrophage lineage, Csf1r-EGFP bone marrow provides a tool for studying the earliest events in myelopoiesis using the sheep as a model

    A Mighty Small Heart: The Cardiac Proteome of Adult Drosophila melanogaster

    Get PDF
    Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca2+-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25%) had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease

    Corporate Governance for Sustainability

    Get PDF
    The current model of corporate governance needs reform. There is mounting evidence that the practices of shareholder primacy drive company directors and executives to adopt the same short time horizon as financial markets. Pressure to meet the demands of the financial markets drives stock buybacks, excessive dividends and a failure to invest in productive capabilities. The result is a ‘tragedy of the horizon’, with corporations and their shareholders failing to consider environmental, social or even their own, long-term, economic sustainability. With less than a decade left to address the threat of climate change, and with consensus emerging that businesses need to be held accountable for their contribution, it is time to act and reform corporate governance in the EU. The statement puts forward specific recommendations to clarify the obligations of company boards and directors and make corporate governance practice significantly more sustainable and focused on the long term

    Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome

    Get PDF
    Additional file 3. This file contains all supplementary tables relating to lncRNA identification via the conservation of synteny. Table S3. lncRNAs inferred in one species by the genomic alignment of a transcript assembled with the RNA-seq libraries from a related spdecies. Table S12. Presence of intergenic lncRNAs both in sheep and cattle, in regions of conserved synteny. Table S13. Presence of intergenic lncRNAs both in sheep and goat, in regions of conserved synteny. Table S14. Presence of intergenic lncRNAs both in cattle and goat, in regions of conserved synteny. Table S15. Presence of intergenic lncRNAs both in sheep and humans, in regions of conserved synteny. Table S16. Presence of intergenic lncRNAs both in goat and humans, in regions of conserved synteny. Table S17. Presence of intergenic lncRNAs both in cattle and humans, in regions of conserved synteny. Table S18. High-confidence lncRNA pairs, those conserved across species both sequentially and positionally

    Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources

    Get PDF
    Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid).Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.Organismic and Evolutionary Biolog
    • 

    corecore