
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species-Specific Transcriptional Regulation of Genes Involved in
Nitric Oxide Production and Arginine Metabolism in
Macrophages

Citation for published version:
Young, R, Bush, SJ, Lefevre, L, Mcculloch, MEB, Lisowski, ZM, Muriuki, C, Waddell, LA, Sauter, KA,
Pridans, C, Clark, EL & Hume, DA 2018, 'Species-Specific Transcriptional Regulation of Genes Involved in
Nitric Oxide Production and Arginine Metabolism in Macrophages' ImmunoHorizons, vol. 2, no. 1, pp. 27-37.
DOI: 10.4049/immunohorizons.1700073

Digital Object Identifier (DOI):
10.4049/immunohorizons.1700073

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
ImmunoHorizons

Publisher Rights Statement:
This article is distributed under the terms of the CC BY 4.0 Unported license.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.4049/immunohorizons.1700073
https://www.research.ed.ac.uk/portal/en/publications/speciesspecific-transcriptional-regulation-of-genes-involved-in-nitric-oxide-production-and-arginine-metabolism-in-macrophages(45045a6f-1fec-453b-8557-7b65d6f8473f).html


Macrophages
in Nitric Oxide Production and Arginine Metabolism in 
Species-Specific Transcriptional Regulation of Genes Involved

Muriuki, Lindsey A. Waddell, Kristin A. Sauter, Clare Pridans, Emily L. Clark and David A. Hume
Rachel Young, Stephen J. Bush, Lucas Lefevre, Mary E. B. McCulloch, Zofia M. Lisowski, Charity

http://www.immunohorizons.org/content/2/1/27
https://doi.org/10.4049/immunohorizons.1700073doi: 

2018, 2 (1) 27-37ImmunoHorizons 

This information is current as of February 2, 2018.

Material
Supplementary

emental
http://www.immunohorizons.org/content/suppl/2018/01/18/2.1.27.DCSuppl

References
http://www.immunohorizons.org/content/2/1/27.full#ref-list-1

, 16 of which you can access for free at: cites 42 articlesThis article 

Email Alerts
http://www.immunohorizons.org/alerts
Receive free email-alerts when new articles cite this article. Sign up at: 

ISSN 2573-7732.
All rights reserved.
1451 Rockville Pike, Suite 650, Rockville, MD 20852
The American Association of Immunologists, Inc.,

 is an open access journal published byImmunoHorizons

 by guest on February 2, 2018
http://w

w
w

.im
m

unohorizons.org/
D

ow
nloaded from

 
 by guest on February 2, 2018

http://w
w

w
.im

m
unohorizons.org/

D
ow

nloaded from
 

 by guest on February 2, 2018
http://w

w
w

.im
m

unohorizons.org/
D

ow
nloaded from

 
 by guest on February 2, 2018

http://w
w

w
.im

m
unohorizons.org/

D
ow

nloaded from
 

 by guest on February 2, 2018
http://w

w
w

.im
m

unohorizons.org/
D

ow
nloaded from

 

https://doi.org/10.4049/immunohorizons.1700073
http://www.immunohorizons.org/content/2/1/27
http://www.immunohorizons.org/content/suppl/2018/01/18/2.1.27.DCSupplemental
http://www.immunohorizons.org/content/suppl/2018/01/18/2.1.27.DCSupplemental
http://www.immunohorizons.org/content/2/1/27.full#ref-list-1
http://www.immunohorizons.org/alerts
http://www.immunohorizons.org/
http://www.immunohorizons.org/
http://www.immunohorizons.org/
http://www.immunohorizons.org/
http://www.immunohorizons.org/


Species-Specific Transcriptional Regulation of Genes Involved
in Nitric Oxide Production and Arginine Metabolism
in Macrophages

Rachel Young,* Stephen J. Bush,* Lucas Lefevre,* Mary E. B. McCulloch,* Zofia M. Lisowski,* Charity Muriuki,* Lindsey A.
Waddell,* Kristin A. Sauter,* Clare Pridans,* Emily L. Clark,* and David A. Hume*,†

*The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom;

and †Mater Research–University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland 4102, Australia

ABSTRACT

Activated mouse macrophages metabolize arginine via NO synthase (NOS2) to produce NO as an antimicrobial effector. Published

gene expression datasets provide little support for the activation of this pathway in human macrophages. Generation of NO requires

the coordinated regulation of multiple genes. We have generated RNA-sequencing data from bone marrow–derived macrophages

from representative rodent (rat), monogastric (pig and horse), and ruminant (sheep, goat, cattle, and water buffalo) species, and

analyzed the expression of genes involved in arginine metabolism in response to stimulation with LPS. In rats, as in mice, LPS strongly

induced Nos2, the arginine transporter Slc7a2, arginase 1 (Arg1), GTP cyclohydrolase (Gch1), and argininosuccinate synthase (Ass1).

None of these responses was conserved across species. Only cattle and water buffalo showed substantial NOS2 induction. The

species studied also differed in expression and regulation of arginase (ARG2, rather than ARG1), and amino acid transporters. Variation

between species was associated with rapid promoter evolution. Differential induction of NOS2 and ARG2 between the ruminant

species was associated with insertions of the Bov-A2 retrotransposon in the promoter region. Bov-A2 was shown to possess LPS-

inducible enhancer activity in transfected RAW264.7 macrophages. Consistent with a function in innate immunity, NO production

and arginine metabolism vary greatly between species and differences may contribute to pathogen host restriction.
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INTRODUCTION

The ability of rodent macrophages to produce NO through the
metabolism of arginine was described in the late 1980s (1) and the
cDNA encoding the calcium-dependent, inducible enzyme re-
quired for this activity, now known as NO synthase (NOS2), was
isolated soon afterward (2, 3). Subsequently, the Nos2 gene was
deleted in the mouse germ line, and shown to be required for
optimal host defense against mycobacteria (4) and for numerous
other intracellular pathogens and pathogenic processes. A current
search of PubMed for “NO ANDmacrophage” produces;18,000
hits. Throughout that vast literature, the species being examined is
commonly omitted from the title of thework. Yet, almost from the
outset, it was clear that there are major species differences in
macrophage arginine metabolism and the production of NO. In
a recent review, Bogdan (5) stated that “there is no doubt that
human cells are able to express NOS2 protein and activity in vitro
and in vivo.” However, the data supporting human macrophage
NOS2 protein expression in vivo rely heavily upon detection with
commercial polyclonal antisera (e.g., Ref. 6). The large majority of
published studies where there has been direct comparison with
mouse have found little or no detectable NOS2 mRNA or NO
production in human monocytes or macrophages stimulated in
vitro (e.g., Ref. 7). Gross et al. (8) found that the NOS2 promoter
region is methylated and contained in inactive chromatin in
humanalveolarmacrophages. Inactivechromatin status atNOS2 is
also evident in freshly isolated human blood monocytes (9). In the
large FANTOM5 dataset, based upon deep sequencing of CAGE
libraries, NOS2 mRNA was not detectable in human monocyte-
derived macrophages stimulated with LPS, or in fresh monocytes
stimulated with a wide range of stimuli. In fact, the most abundant
site of expression was adipocytes (10). Vitek et al. (11) created a hu-
man NOS2 transgene on a mouse Nos2-deficient background, and
reported that both NOS2 expression and inducible NO production
in macrophages were considerably lower than in Nos2+/+ mice.
Substantial differences in the set of LPS-inducible genes between
humans and mice can be associated with major differences in
promoter architecture; regulatory elements identified inmice are
not conserved in humans (7). The regulatory differences between
mouse and human macrophages are not restricted to NOS2, and
are shared with other species. Pig macrophages also failed to
induceNOS2mRNA in response to activation (12), but sharewith
humans the induction of a substantial set of genes that are not
induced in mouse. Nos2 induction is not even uniform among
rodent species. Isolated macrophages from guinea pigs and
hamsters produce substantially less NO than mice, and this has
been associatedwithNos2mRNAandpromoter variation (13–15).
Other species in stimulated macrophages appear to produce little
or no detectable NOS2 activity include rabbits, sheep, goats,
monkeys, horses, and badgers (15–18).

Mice, humans, and other species also differ in other aspects of
arginine metabolism. The production of NO in mouse macro-
phages depends upon induction of the cationic amino acid
transporter encoded by Slc7a2 (19), which is not detectably
expressed in human myeloid cells (7, 10), or in activated pig

macrophages (12). Degradation of arginine by arginase enzymes
potentially competes for intracellular arginine to compromise NO
production. Thomas and Mattila (20) reviewed the literature on
arginine metabolism in human macrophages. In mice, arginase 1
(Arg1) has come tobe regarded as amarker forM2/IL-4–mediated
macrophage polarization, but it is not shared with human
macrophages (21). Indeed, in the FANTOM5 CAGE data, ARG1
mRNAinhumans is very stronglyexpressedbyneutrophils, aswell
as hepatocytes and the liver, but is entirely absent frommonocytes
and macrophages in any state of activation (10). Finally, the key
cofactor for NOS2, tetrahydrobiopterin (THB4), is regulated
differently between the species. In both mouse and human, the
limiting enzyme GTP cyclohydrolase 1 (GCH1) is strongly
inducible in macrophages. However, in human monocytes the
downstream enzyme, 6-pyruvoyl THB4 synthase (PTS), was
expressed at very low levels, and the major outcome of GCH1
induction was the production and secretion of neopterin (22, 23).
In this study we take advantage of large RNA sequencing (RNA-
seq) datasets from multiple species to reexamine the species
specificity of genes involved in arginine metabolism, and analyze
the promoters of differentially regulated transcripts to highlight
possible mechanisms underlying the gain and loss of gene
expression.

MATERIALS AND METHODS

Animals
Approvalwas obtained from the Protocols andEthics Committees
ofTheRoslinInstitute,TheUniversityofEdinburgh, and theRoyal
(Dick) School of Veterinary Medicine. In accordance with the
United Kingdom Animal (Scientific Procedures) Act 1986, this
study didnot require aHomeOffice project license as no regulated
procedures were carried out. Cattle, water buffalo, and pigs were
euthanized by captive bolt, sheep were euthanized by electrocu-
tion and exsanguination, and rats were euthanized by CO2

asphyxiation. Goat samples were collected from the slaughter-
house.Horseswere admitted to the EquineHospital at the Royal
(Dick) School of Veterinary Studies for elective euthanasia.
Horseswere euthanizedwith i.v. secobarbital sodium 400mg/ml
and cinchocaine hydrochloride 25 mg/ml (Somulose; Arnolds/
Dechra).

Generation of bone marrow–derived macrophages
Ribs were collected postmortem from cattle, goats, horses, sheep,
pigs, and water buffalo, and femurs were collected postmortem
from rats. Bone marrow (BM) cells were isolated using the
methods described by Schroder et al. (7) and Kapetanovic et al.
(12). BM-derived macrophages (BMDM) were cultured from
cryopreserved BM cells for each species. Briefly, BM cells isolated
from rats were cultured in DMEM (Sigma-Aldrich), heat-
inactivated 10% FBS (GE Healthcare), penicillin/streptomycin
(Thermo Fisher Scientific), and GlutaMAX (Thermo Fisher
Scientific). BM cells from pigs were cultured as described by
Kapetanovic et al. (12), sheep cells were cultured as described by
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Bush et al. (24), and cells from all other animals were cultured in
RPMI 1640 (Sigma-Aldrich), heat-inactivated 20% FBS (GE
Healthcare) (cattle and water buffalo) or autologous serum
(Sigma-Aldrich) (goatandhorse),penicillin/streptomycin(Thermo
Fisher Scientific), and GlutaMAX (Thermo Fisher Scientific).
BMDM were obtained by culturing BM cells for 7–10 d in the
presence of recombinant human CSF1 (104 U/ml; a gift from
Chiron, Emeryville, CA) on bacteriological plates, as described
in mouse, pig, and sheep (7, 12, 24); goat BMDMs were dif-
ferentiated on tissue culture plastic. Differentiatedmacrophages
were detached from plates by either vigorous washing using
a syringe and blunt 18 g needle, or using a cell scraper, then
washed, counted, and reseeded at 106 cells per ml. Cells were
treated with LPS from Salmonella enterica serotype Minnesota
Re 595 (Sigma-Aldrich) for 7 and 24 h at a final concentration of
100 ng/ml for large animals and 10 ng/ml for rats.

RNA isolation
RNAwas isolated from control and LPS-stimulated cells using the
TRIzol method (Thermo Fisher Scientific) followed by a clean-up
step from the RNeasy Mini Kit (Qiagen). Cells were lysed in six-
well plates at 0, 7, and 24 h post-LPS stimulationwith 1ml TRIzol,
then frozen until RNA extraction was performed. Tissue culture
replicates were included. Lysates were thawed and brought to
room temperature. Chloroform (200 ml) was added and samples
incubated for 2–3 min at room temperature. The samples were
centrifuged at 12,0003 g at 4°C for 15 min to separate the phases.
The aqueous phase was collected then precipitated in 1 volume of
70% ethanol. Samples were then transferred immediately to an
RNeasyMini Kit spin column andclean-upperformedas specified
by the manufacturer. RNA was quantified by Qubit BR dsDNA
assay (Thermo Fisher Scientific) and RNA integrity number
equivalent was calculated using RNA ScreenTape on the Agilent
2200 TapeStation. All samples had RNA integrity number
equivalent values.7.

Library preparation and sequencing
RNA-seq libraries were generated and sequenced by Edinburgh
Genomics. All libraries were prepared using the Illumina TruSeq
Stranded library protocol for total RNA libraries (Part: 15031048,
Revision E) with the exception of rat and goat where stranded
mRNA libraries were prepared (Part: 15031047, Revision E).
TruSeq Stranded total RNA librarieswere sequenced at a depth of
.100 million paired-end reads per sample for cattle, buffalo,
horse, and pig using the Illumina HiSeq 2500 platform. Similarly,
TruSeq Stranded mRNA libraries were sequenced at a depth of
.25 million paired-end reads for rat on the Illumina HiSeq 2500
platform. The sheep RNA-seq dataset is a component of a high
resolution atlas of gene expression for sheep, which we have
described previously (25). Goat mRNA libraries were sequenced
at a depth of.50 million paired-end reads per sample using the
Illumina HiSeq 4000 platform. Raw read data for all libraries has
been submitted to the European Nucleotide Archive (https://
www.ebi.ac.uk/ena)under accessionnumbersPRJEB19199 (sheep),
PRJEB21180 (water buffalo), PRJEB22535 (cattle), PRJEB22536

(pig), PRJEB22537 (horse), PRJEB22553 (rat), and PRJEB23196
(goat).

RNA-seq data processing
RNA-seq data were processed using the high-speed transcript
quantification tool Kallisto v0.43.0, as described previously (24),
generating gene-level expression estimates as transcripts per
million (TPM). Kallisto quantifies expression by building an index
of k-mers froma set of reference transcripts and thenmapping the
reads to these directly (26). The reference transcriptomes for each
species, from which Kallisto indices were generated, are given in
Supplemental Table I. A two-pass approach to Kallisto was used
(24) whereby these transcriptomic indices are iteratively revised
and expression requantified. In brief, expression was quantified
for an initial analysis (the first pass), the output of which is parsed
so as to revise the transcriptome. A second index is then created
with a higher proportion of unique k-mers, conferring greater
accuracy when (re) quantifying expression. The revised indices
include, where possible, de novo assembled transcripts that had
not previously been annotated [by taking the set of reads Kallisto
could not map during the first pass and assembling them with
Trinity version r20140717 (27)] and exclude transcripts not
detectably expressed in any library during the initial analysis
(detailed in Supplemental Table I). For both the first and second
pass index, k = 31. The expression of genes involved in arginine
metabolism (KEGGpathway ID:map00230; http://www.genome.
jp/kegg/pathway/map/map00330.html)was then compared across
species.

Griess assay
NOproductionwasmeasured byGriess assay. Nitrite (the product
of NO oxidation in culture) was quantified against sodium nitrite
standards. Cell culture supernatants from LPS-treated BMDM
wereaddedtoanequal volumeofGriess reagent [1%sulfanilamide,
0.1%N-(1-naphtyl)ethylenediaminediHCl, 2.5%phosphoricacid].
The reactionwas incubatedat 37°C for30min thentheabsorbance
measured at 570 nm. As a positive control for NO production,
chicken BMDM—prepared as previously described (28)—were
stimulated with LPS under the same conditions.

Bovine NOS2 promoter (enhancer) assay
A 150 bp region of the bovineNOS2promoter covering theBov-A2
element was synthesized by Eurofins Genomics and cloned into
the BamH1/Sal1 site downstream of the promoter-luc+ transcrip-
tional unit of the pGL3 promoter vector (E1761; Promega).
Transient transfections were performed by electroporation of
5 3 106 RAW 264.7 cells with 5 mg of pGL3-NOS2 construct or
empty vector in 0.4 cmelectroporation cuvettes at 300V, 950mF
using a Bio-Rad Gene Pulser. Transfected cells were cultured at
37°C for 4h thengiven freshmedia and returned to the incubator
overnight. The following day, cells were treated with 100 ng/ml
LPS and incubated at 37°C. Control wells containing no LPS
were incubated in parallel. After 24 hLPS stimulation, themedia
were removed, and the cells washed in PBS then lysed in
Luciferase assay lysis reagent (E4030; Promega) at 280°C for

https://doi.org/10.4049/immunohorizons.1700073

ImmunoHorizons SPECIES DIFFERENCES IN ARGININE METABOLISM AND NO PRODUCTION 29

 by guest on February 2, 2018
http://w

w
w

.im
m

unohorizons.org/
D

ow
nloaded from

 

https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/ena
http://www.immunohorizons.org/lookup/suppl/doi:10.4049/immunohorizons.1700073/-/DCSupplemental
http://www.immunohorizons.org/lookup/suppl/doi:10.4049/immunohorizons.1700073/-/DCSupplemental
http://www.genome.jp/kegg/pathway/map/map00330.html
http://www.genome.jp/kegg/pathway/map/map00330.html
https://doi.org/10.4049/immunohorizons.1700073
http://www.immunohorizons.org/


1 h. The cellswere collected from the plates by scraping, then the
lysates collected in microfuge tubes and vortexed for 10–15 s.
The samples were centrifuged at 12,000 3 g for 15 s at room
temperature then the supernatants collected for luciferase assay.
Luciferase reagent was dispensed into an opaque 96-well plate.
Then 20ml of each samplewas added to thewells containing the
reagent and the plate vortexed briefly. The platewas analyzed on
a Synergy HT Biotek luminometer.

RESULTS

Species differences in NO production
To extend our knowledge of the diversity and evolution of innate
immune genes across species, we have adapted methods pre-
viously described for the mouse and pig (12) for the production of
BMDM from rat, horse, sheep, goat, cattle, and water buffalo. For
this study, pig BMDMs were also generated for RNA-seq analysis.
In eachcase,BMcellsweregrown in recombinanthumanCSF1 for
7–10 d, afterwhich the cells form a relatively confluent population
of macrophages. The cells were then harvested from their culture
dishes and counted before reseeding on tissue culture plastic for
stimulation with LPS. For each species, we have determined the
time course of activation bymeasuring the inducible expression of
TNF-amRNA.

To confirm and extend previous findings, we examined LPS-
inducible NO production in a number of species. Fig. 1 shows
comparative analysis ofwater buffalo, cattle, sheep, goat, andhorse
responses to LPS. In each case, a positive control, chicken BMDM,
which we have previously shown produce large amounts of NO in
response to LPS (28), was tested side by side. Cattle macrophages
madeNO in response to LPS treatment at levels similar to chicken
BMDM; under similar conditions, water buffalo and goat made
lower levels of NO, and sheep macrophages produced no
detectable NO. Horse BMDM produced no detectable NO in
response to LPS, as previously noted for alveolar macrophages
(18). Inmice, NO production can also be induced by IFN-g, and
this treatment increases the response to LPS, largely by shifting
the LPS dose-response curve rather than increasing the absolute
response (29).However, horsemacrophagesmade very low levels
of NO even after IFN-g priming (Supplemental Fig. 1).

RNA-seq analysis of genes involved in arginine metabolism
There are several possible reasons why macrophages might not
make detectable NO, even if NOS2 mRNA is induced. We there-
fore examined the expression of all relevant genes in each of the
species.Forcomparisonacross species,wechose the 7h timepoint
following LPS addition, consistent with a previous comparative
analysis of mouse, pig, and human (12). In the current study, we
included rat, rather thanmouse, as a positive control rodent species,
in part also to determine whether the mouse is representative
as a rodent species (see Introduction). Fig. 2 summarizes the
pathways ofmammalian argininemetabolism, andTable I shows
the expression levels of transcripts encoding enzymes associated
with arginine metabolism and the production of the NOS2

cofactor, THB4. For comparison, we have extracted expres-
sion of these genes from the FANTOM5 CAGE tag sequencing
dataset on human monocyte-derived macrophage response to
LPS; the data are consistent with previously published micro-
array data (7).

There are a number of features to note. Firstly, all four of the
ruminant species inducedNOS2mRNAin response toLPS, but the
maximum levels of stimulated expression were at least 15-fold
lower in sheep and goats (TPM�20) comparedwithwater buffalo
(TPM .300), and cattle produced even higher levels of mRNA
(TPM�900). The induced level ofNOS2mRNA in sheep [see also
BioGPS sheep dataset (www.biogps.org/dataset/BDS_00015/
sheep-atlas/)] and goat macrophages was lower than the
unstimulated level in rat macrophages (TPM�60). It is unclear
why goat macrophages produced detectable NO, where sheep
macrophages did not. One explanation may lie in the relatively
high expression of genes required for cofactor, THB4, production
(PTPS,SPR) in goatmacrophages.Horse andpigNOS2mRNAwas
on the limits of detection (TPM ,2), although following LPS
stimulation, rat Nos2 mRNA was a further order of magnitude
higher than in any of the ruminants (TPM�5000). The second key
difference between all of the large animals and rodents is
the regulation of genes involved in arginine uptake. In rats, as in
mice (19), LPS greatly increased (18-fold) expression of the cationic
amino acid transporter, Slc7a2, whereas goats were the only large
animal species inwhichSLC7A2mRNAwasdetectable (TPM6)and
regulated to any degree by LPS, with an induced level (TPM�16)
still lower than the basal level in the rat (TPM46). Goat and buffalo
also expressed the other cationic arginine transporter, SLC7A1,
at higher level, inducible in buffalo and constitutive in goat.

FIGURE 1. LPS-inducible NO production in macrophages.

Supernatants were collected from LPS stimulated (S. enterica; 100 ng/ml)

BMDM from water buffalo, cattle, sheep, goat, and horse at 0, 7, and

24 h poststimulation and nitrite production measured by Griess assay.

Stimulated chicken BMDM 0 and 7 h poststimulation were used as a

positive control. Mean nitrite levels are shown with error bars for the SD

of the mean for three biological replicates per species, performed in

duplicate. Statistically significant differences versus unstimulated cells

are indicated (t test; ****p , 0.0001, **p , 0.01). ND, not detected.
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The major avenue for arginine uptake in large animal
macrophages is likely to be SLC3A2/SLC7A7 (also known as the
Y+L or LAT1/CD98 system), which also mediates the uptake of
other large neutral amino acids, including tryptophan, and is
likely to be involved in inducible tryptophan metabolism. The
geneencoding thealternativeLchain,SLC7A5,wasonlyexpressed
at high levels in the goat macrophages (TPM�115). SLC3A2 and
SLC7A7werebothhighly expressed inmacrophages fromall of the
large animal species examined, including humans, substantially
higher than in rats. In humans at least, SLC7A7 is strongly
monocyte-macrophage enriched relative to other cell types
and tissues (10); see also data on the BioGPS web portal (www.
biogps.org/dataset/GSE1133).

The species studied also differ greatly in their expression of
mRNA encoding genes involved in arginine breakdown. Arg1 has
been proposed as amouseM2macrophagemarker and is strongly
inducible by IL-4, but induction was not conserved in human
macrophages (21). Arg1 was induced by LPS in mouse macro-
phages, but not in human (7). In ratmacrophages,Arg1was highly
expressed and very strongly induced by LPS. In the FANTOM5
dataset (10) neither ARG1 nor ARG2 was expressed in human
monocytes or macrophages in any activation state. In pigs, as in
rats, ARG1 was highly expressed and strongly induced by LPS,
whereas in horse ARG2 was constitutively expressed at high
levels (TPM�120) but downregulated by LPS stimulation. In each
of the ruminant species, ARG2, but not ARG1, was expressed and

strongly induced by LPS. In rats, and all of the large animals, the
ornithine generated by arginase activity is likely metabolized
further by ornithine amino transferase and ornithine decarbox-
ylase, which are each constitutively expressed at high levels in
macrophages. As discussed by Bogdan (5), argininemight also be
derived from either the breakdown of peptides by enzymes such
as endoplasmic reticulum–associated aminopeptidase 1, carboxy-
peptidases M, and D or by resynthesis from citrulline via
argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase
1 (ASL). Ass1-deficient mice are also deficient in NO production
and antimicrobial activity, and this pathway is required to
overcome the degradation of arginine by Arg1 (30). This pathway
is likely conserved in rats, because Asl was constitutive, and Ass1
was strongly induced by LPS in the rat macrophages. However,
in human macrophages, both ASL and ASS1were on the limits of
detection, and ASS1was also very low in the other large animals.

In human macrophages, the production of the NOS2 cofactor,
THB/BH4, is apparently constrained by very low expression of
the synthetic enzymes PTS and SPR. Indeed, in the FANTOM5
data, SPR expression is very low, and PTS was barely detectable
in monocytes or macrophages under any conditions. Activation
of human macrophages by LPS produced a massive induction of
GCH1, butprevious reports indicate themajorproduct isneopterin
rather than THB4 (22, 23). Early studies identified serum and
urinary neopterin as amarker of immune activation in human and
other primates, where this product was undetectable in rodents
(31). More recently, neopterin was detected in the serum of LPS-
challenged pigs, whereas there was only a marginal and transient
increase in serum NO (32).

Gch1was also strongly induced in rat macrophages by LPS, as
previously observed in both BMDM and peritoneal macrophages
in mice (7); see also data on www.biogps.org/dataset/GSE10246.
In the ruminants and horses, GCH1 was expressed constitutively,
but was further induced (;4-fold) only in cattle. In pigs, PTS
mRNAwasdetectedat veryhigh levels (TPM�140).GCH1wasnot
annotated in the pig genome (version 10.2) when expression
profilesofpig andhumanmacrophageswerepreviously compared
(12). Unlike humanmacrophages, pigmacrophages expressed low
levels of GCH1 constitutively but it was not induced by LPS.

Gain and loss of candidate enhancers in the NOS2 promoter
We and others have shown that variation in LPS-inducible gene
expression in humans, mice and pigs, including that of NOS2, is
associated with major differences in promoter architecture in-
cluding the gain and loss of candidate enhancers (7, 12). The in-
ducible arginine transporter Slc7a2, which is essential for NO
production in mouse macrophages, provides another example. In
the FANTOM5 CAGE data, this gene is highly expressed in liver
butundetectable inmyeloidcells in anystateof activation,whereas
in mouse it is expressed at similar levels in liver and activated
macrophages. Inducible activity of mouse Slc7a2 varies between
mouse strains, associated with alterations in a distal purine-rich
promoter element (33). This element is not conserved in the rat
promoter, and indeed the promoter regions of mouse, rat, pig, and
human have diverged substantially (Supplemental Fig. 2).

FIGURE 2. Mammalian arginine metabolism pathway in

macrophages.

Arginine is transported into mammalian macrophages by amino acid

transporters (SLC7A1/7A2/7A5/7A7, SLC3A2), then metabolized by

either inducible NO synthase (iNOS) into NO and citrulline, or

arginase into ornithine and urea. Citrulline can feed back into arginine

synthesis via ASS1 and inducible ASL. Citrulline, polyamines or

proline and glutamate can be generated from ornithine via ornithine

transcarbamylase (OTC), ornithine decarboxylase (ODC) or ornithine

aminotransferase (OAT), respectively. The iNOS cofactor, THB, is

generated by GTP via GCH1, PTS, and SPR respectively, and is a

rate-limiting step in the production of NO.
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Wewere especially interested in the mechanisms distinguish-
ing NOS2 induction between the four relatively closely related
ruminantspecies.Fig. 3 showsalignmentof theproximalpromoter
regions across species that do, or do not, show induction of NOS2
mRNA in response to LPS in our experiments or previous studies.
In each species there is a TATA box. Despite the relatively low
overall conservation, the proximal promoter elements that have
been implicated in transcriptional regulation (13, 34), including
NF-kB,Oct1, andC/EBPmotifs, are conserved anddonot correlate
with LPS inducibility. Accordingly, it seems likely that differ-
ences among species relate to variation inmore distal regulatory
elements, such as the enhancer located around21 kb upstream
in the mouse genome.

Fig. 4A shows a pairwise dot-matrix alignment of distal NOS2
promoters from cattle and human. An arrow indicates the relative
locationof themouse enhancer,whichwas previously shown to be
poorly conserved in humans and lacked the enhancer activity
detected in the equivalent mouse sequence (34). In this region,

cattle, sheep, and pig genomes are similar to human,withmultiple
substitutions in the putative mouse LPS responsive element.
Regions of relative conservation between the human and bovine
NOS2 59 flanking region extending up to 25 kb from the tran-
scription start site are interspersed with regions in which there is
nodetectable alignment. Fig. 4Bshowsa similar alignmentof cattle
and sheep, where there is almost perfect conservation with the
exception of a number of small insertions. Both the regions of
substantial misalignment between the ruminants and other large
animals, and the small additional insertions in cattle relative to
sheep (and vice versa), are due to the presence of theBov-A2 SINE
retrotransposon, an ancestral element present at up to 200,000
copies in ruminant genomes (35, 36). Fig. 4C shows the align-
ment of the Bov-A2 element with the cattle NOS2 promoter
region, and Fig. 4D shows the equivalent alignment with the
sheep. It is clear that those regions lacking homology with the
humanpromoterarepredominantlyoccupiedbypartial or complete
Bov-A2 elements.

TABLE I. Expression levels of transcripts encoding enzymes associated with arginine metabolism and the production of NO

Gene Name Description

RNA-Seq

Sheep Goat Cattle Buffalo

0 h 7 h 0 h 7 h 0 h 7 h 0 h 7 h

ARG1 Arginase 1 0.04 0.05 2.64 2.73 6.05 5.84 0.02 0.01
ARG2 Arginase 2 7.40 56.27 11.82 41.06 48.48 347.99 30.06 153.54
ASL Argininosuccinate lyase 31.48 14.75 25.40 17.78 38.21 17.99 19.72 6.50
ASS1 Argininosuccinate synthase 1 19.39 10.18 4.38 3.72 10.71 7.65 0.05 0.32
GCH1 GTP cyclohydrolase 1 17.14 32.88 8.31 10.15 22.94 86.98 13.66 10.90
NOS2 NO synthase 2, inducible 0.55 19.09 3.78 19.69 2.14 901.20 3.25 301.37
OAT Ornithine aminotransferase 362.00 324.62 164.61 167.15 1166.67 854.75 204.40 142.74
ODC1 Ornithine decarboxylase 1 92.12 269.73 340.63 376.01 45.46 18.26 119.02 53.83
PTS 6-pyruvoyltetrahydropterin synthase 17.49 13.66 62.01 62.61 27.53 11.91 36.36 16.32
SLC3A2 Solute carrier family 3, member 2 161.19 167.79 209.91 210.11 98.20 62.87 168.22 146.74
SLC7A1 Solute carrier family 7, member 1 7.91 10.02 38.08 45.94 7.37 6.99 19.95 49.59
SLC7A2 Solute carrier family 7, member 2 0.01 0.04 5.88 15.73 0.04 0.18 0.18 2.03
SLC7A5 Solute carrier family 7, member 5 9.01 21.67 115.47 106.67 5.83 3.46 7.74 7.46
SLC7A7 Solute carrier family 7, member 7 283.90 161.32 109.13 60.78 220.58 120.25 114.72 103.68
SPR Sepiapterin reductase 21.00 13.80 78.29 124.30 20.47 4.60 37.28 13.15

Gene Name Description

RNA-Seq CAGE

Horse Pig Rat Human

0 h 7 h 0 h 7 h 0 h 7 h 0 h 7 h

ARG1 Arginase 1 0.10 0.05 70.62 379.11 76.63 1041.60 0.00 0.00
ARG2 Arginase 2 119.23 59.72 13.56 11.91 3.35 1.88 3.10 1.30
ASL Argininosuccinate lyase 24.06 14.48 13.93 10.35 69.63 50.24 5.80 0.70
ASS1 Argininosuccinate synthase 1 25.85 20.34 0.02 0.04 2.38 250.12 0.00 0.00
GCH1 GTP cyclohydrolase 1 24.77 31.89 9.82 9.67 24.17 189.57 0.70 391.00
NOS2 NO synthase 2, inducible 0.00 0.01 0.66 1.77 59.03 4961.79 0.00 0.00
OAT Ornithine aminotransferase 103.56 68.81 95.74 83.74 104.93 82.10 83.00 57.00
ODC1 Ornithine decarboxylase 1 98.48 39.73 241.26 195.93 64.55 45.63 5.30 1.30
PTS 6-pyruvoyltetrahydropterin synthase 27.98 16.30 143.49 141.30 11.51 13.01 0.50 0.00
SLC3A2 Solute carrier family 3, member 2 168.35 120.18 238.46 248.84 191.23 289.86 115.00 123.00
SLC7A1 Solute carrier family 7, member 1 13.27 9.72 5.45 4.68 20.02 14.00 0.00 0.00
SLC7A2 Solute carrier family 7, member 2 0.01 0.05 1.00 0.47 46.31 843.81 0.00 0.00
SLC7A5 Solute carrier family 7, member 5 8.97 7.28 13.09 8.81 17.71 14.76 2.70 75.00
SLC7A7 Solute carrier family 7, member 7 57.12 46.60 136.68 198.99 16.97 16.00 71.00 25.00
SPR Sepiapterin reductase 10.20 3.55 13.08 8.26 10.08 9.95 21.00 1.80

Expression levels are represented as TPM, and are mean values for each condition from multiple animals. Sheep, n = 6; goat, n = 3; buffalo, n = 4; cattle, n = 4; horse,
n = 3; pig, n = 3; rat, n = 3; human, n = 3. Human data were generated by CAGE-seq, as previously described (10), and all other data were generated by RNA-seq as
described.
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FIGURE 3. Alignment of the NOS2 proximal promoter region across species.

A 323 bp region of the proximal NOS2 promoter was aligned between 11 species that show LPS-induced NOS2 gene expression or not.

Transcription factor binding sites, PU.1, C/EBP, NF-kB, and OCT1 and the TATA box are indicated in bold. Asterisks indicate bases conserved across

the species.

https://doi.org/10.4049/immunohorizons.1700073

ImmunoHorizons SPECIES DIFFERENCES IN ARGININE METABOLISM AND NO PRODUCTION 33

 by guest on February 2, 2018
http://w

w
w

.im
m

unohorizons.org/
D

ow
nloaded from

 

https://doi.org/10.4049/immunohorizons.1700073
http://www.immunohorizons.org/


The absence of a Bov-A2 insertion in the proximal TP53 pro-
moter region has been implicated in regulated mammary in-
volution and the persistence of lactation in bovids compared with
other ruminants through functional STAT1 andNF-kB responsive
motifs (37). We have located this proximal insertion in the NOS2
gene in thebison,water buffalo, andyakgenomes, but itwas absent
in goats. Fig. 5 shows alignments of the NOS2 Bov-A2 element
from four bovid species with the consensus BOV-A2 sequence,
and with a distal BOV-A2 sequence extracted from the TP53
locus. A notable feature is that the direct repeats flanking this
insertion are conserved in all bovids, but also in the sheep and
goat genomes (data not shown), suggesting that this is a
relatively recent insertionwhereas the insertion site preexisted
in the ancestral ruminant. The aligned sequences in Fig. 5 are
also annotatedwith candidate transcription factor binding sites
derived from analysis of the sequence using Jaspar (http://
jaspar.genereg.net). Damiani et al. (35) have noted the
association of BOV-A2 element insertions with regulatory
regions of ruminant genomes and have speculated upon their
role in transcription regulation. We reasoned that BOV-A2,
containing binding sites for so many macrophage-specific
(PU.1, CEBPb) and inducible (STAT1, IRF1, NF-kB) transcrip-
tion factors, could contribute to the regulated expression ofNOS2
in ruminants, comparedwith large (nonruminant) animal species,
and that the additional BOV-A2 element located more proximally
in the bovine genome could explain the increased expression.

The bovine NOS2 BOV-A2 element is LPS responsive
To confirm the activity of the proximalNOS2 bovine copy of BOV-
A2 as a possible regulatory element, we constructed an enhancer/
reporter luciferase construct and transfected the LPS-responsive
mouse macrophage cell line, RAW264 (38). This line was pre-
viously used to demonstrate the lackof activity of thehumanNOS2
promoter and enhancer (34). The results of transient transfection
analysis are shown in Fig. 6. Compared to the basal promoter, the
presence of the candidate BOV-A2 enhancer element produced
both constitutive reporter gene activity and increased expres-
sion in the presence of LPS. Plasmid DNA can itself induce NF-
kB–dependent reporter activity via TLR9 (39), and so the basal
activity of the NOS2 Bov-A2 element is most likely partly at-
tributable to activation by this pathway.

DISCUSSION

We have dissected the transcriptional regulation in macro-
phages of genes associated with arginine metabolism in a range
of species. BMDMfromsheep, cattle,waterbuffalo, goat, horse, pig,
and rat were cultured under identical conditions, and stimulated
with the same stimulus, LPS. Although it has been suggested that
macrophages from different species respond differently to cell
culture and that arginine metabolism may be different in vivo, it
remains the case that there is large divergence between species

FIGURE 4. Alignment of distal NOS2 promoters from cattle, human, and sheep, and the Bov-A2 element.

NOS2 promoter sequences were obtained from Ensembl. (A and B) show pairwise dot-matrix alignment of 25 kb sequences upstream of NOS2

transcription start site from (A) cattle (y-axis) versus human (x-axis), and (B) sheep (y-axis) versus cattle (x-axis). The arrow in (A) indicates the relative

location of the mouse Nos2 enhancer. In (B), small insertions showing misalignment are indicated by arrows. (C and D) show the alignment of the Bov-

A2 element with the cattle (C) and sheep (D) 25 kb NOS2 promoter regions. Arrows indicate regions occupied by partial or complete Bov-A2 elements.
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and NOS2 is only one component of the difference. In a recent
review of arginine metabolism in myeloid cells (40), the authors
discussed the prevalent uptake of arginine by the Y+ amino acid
transport system (SLC7A2), the functional importance of
inducible arginase 1 (ARG1) in control of arginine availability, the
biological importance of NO production in antimicrobial defense
and the fact that in macrophages, the NOS2 product, citrulline,
can be recycled to arginine via ASS1 and ASL (30). Our analysis of
the response of ratmacrophages toLPSdemonstrates that each of
these responses is shared with mice; Nos2, Arg1, Slc7a2, and Asl
were each very highly induced after 7 h exposure to LPS andAss1
was constitutively expressed (Table I). However, of the LPS re-
sponses observed in rodents, only the induction ofNOS2 and ARG1
was observed to any extent in any nonrodent species.

Jungi et al. (16) reported previously that bovine macrophages
grown from BM or blood monocytes, or isolated from alveolar
lavage, were able to induce NOS2 mRNA and produce NO in
response to LPS. In the same study, goat macrophages produced
much less NOS2 mRNA and NO than cattle. We have repeated
these studies and extended them to two additional ruminant
species, sheep and water buffalo. By contrast to the previous
findings, goat macrophages produced detectable NO, despite low
expression of NOS2, whereas there was no detectable NO pro-
duction by sheep macrophages (in which NOS2 was induced to
a similar extent) or in horses or pigs, where it was not induced at
all. One explanation may be the selective expression of cationic
amino acid transporters, SLC7A1 and SLC7A2 in goats relative to
the other species (Table I).

FIGURE 5. The Bov-A2 element is conserved in the NOS2 gene of bovid species.

A;300 bp region of the cattle TP53 gene andNOS2 gene from cattle, buffalo, bison, and yak were aligned to the consensus BOV-A2 sequence. Candidate

transcription factor binding sites derived from analysis with Jaspar are indicated in bold. Asterisks indicate bases conserved across the species.
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The comparative analysiswehave presented strongly supports
theview that thedivergentexpressionofNOS2 andothergenes is a
consequence of the evolution of cis-acting regulatory elements (7,
12) rather than an idiosyncratic feature of cell culture systems. As
shown in Supplemental Fig. 2, the differential regulation of the
inducible arginine transporter, Slc7a2, in rodent macrophages is
associated with the presence of purine-rich bindingmotifs for the
macrophage transcription factor, PU.1, which were shown pre-
viously to be functional (31). The unique regulated expression
of ARG2 in ruminant species and horses is also associated with
large-scale promoter divergence to the extent that there is little
alignment outside21 kb even between cattle and sheep. There is a
BOV-A2 insertion around 23 kb in sheep and goats that is not
present in cattle. Multiple insertions of the BOV-A2 retrotranspo-
son produce major differences between the human and pig NOS2
promoter regions, which are not LPS inducible, and the ruminant
NOS2 promoters, which are. Our data suggest that the recent
insertion of a proximal BOV-A2 element in the bovid lineage,
shared by cattle, water buffalo, yak, and bison, could contribute to
the elevated expression and greater inducibility of NOS2 in these
species. A more global comparative analysis of the RNA-seq data-
sets may reveal other examples of functional gain and loss of the
BOV-A2element that contribute to species-specific inducible gene
expression in ruminant macrophages. The differences in arginine
metabolism and production of NO could potentially underlie
species-specific susceptibility to pathogens. For example, sheep
are consideredmuchmore susceptible than cattle to the parasite
Toxoplasma gondii (41) whereas NO is strongly implicated in
both resistance to the parasite, and pathology, in mice based
upon analysis of Nos2 knockouts (42). In overview, our findings
extend the evidence that rodents are not always appropriate

models for understanding host defense and pathology in other
mammalian species including humans (7, 12).
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Supplementary Figure 1.  IFNγ does not significantly induce NO production in horse BMDM.  Horse BMDM were 
stimulated with LPS at 0, 7, and 24 hr with or without IFNγ treatment.  Nitrite concentration was measured by Griess 
assay.  T-test was performed between LPS and LPS + IFNγ treatment at each timepoint, however differences were not 
statistically significant.  Error bars represent the SD of the mean of triplicates. 



 

 

Human SLC7A2    GA---AAATTAACAGGCTTTCACATTGTGACTT-AATCTTATCAGAGACTCCTAAAGTAAACAATAGCGCAGTAGGAGAA 

Rat Slc7a2      TAGAAAAATAAA--GAGTTTCACATTGTGACTTTAATCTTATCAGAGACTCCAAAAGCAAGCAATAGCACAGAACGAGAA 

Mouse Slc7a2    TA---AAATCAA--GAGTTTCACATTGTGACTTTAATCTTATCAGAGACTTCTAAAGCAA---ATAGCACAGAATGAAAA 

Pig SLC7A2      TA---AAATTAACAGAGTTTCATATTGTGTCTTTAATCTTATCAGAGACTCCTAAAGTAAACAATAGCGCAGTATGAGAA 

                 *   **** **  *  ***** ****** *** **************** * **** **   ***** *** * ** ** 

 

Human SLC7A2    ACCCTGATTGTGTAACTTCTGCTCTTGCTCCCCTGGAAATA----ATGTCATTTCCTA--TAAACCCACCCCCAAACAAT 

Rat Slc7a2      AGCTCGATTGTGTAACTTCTGTTTTTGCTGGCTAGGAAATACCAAGTATCCTTTTCTT-AAAAACCCACCTCCAAATAAC 

Mouse Slc7a2    ACCTCGATTGTGTAACTTCTGTTTTTGCTGGCTATGAAATACCAAGTATCCGTTTCTTTAAAAACCCACTTCCAAATAAC 

Pig SLC7A2      AACTTGGTTGTGTAACTCTTG--------------GAAATAGCAAATGTCGCTTTCTT--ATAGCTCGCCTCTAAGTCAT 

                * *  * **********  **              ******     * **  ** **     * * * *  * **   *  

 

Human SLC7A2    CGTGACTACGTATTCATACCACTGGAGTCTTCCAAAATAGCAACTGCACATTA-------------------TTTATCAA 

Rat Slc7a2      CGTGACTGCCTGCCTGCCTATTCACAAGTCT-----GAAGTCCTCGAGTTTTGCTTTCACTAT------GATTTCATTAC 

Mouse Slc7a2    CATGACTATG-ACCTGCCTATTCACGAGTCT-----GGAATCTTCAAGTTTTG-----------------ATTTCATTAC 

Pig SLC7A2      CAGGTCTACCTGTTCACTTCACTGGGACTTTCCAA-ATAGCAACTAAATATTGCAATAAACGGTTTACAGGTTTTATTGG 

                *  * **                       *       *           **                    ** **    

 

Human SLC7A2    CGTTTAGTTTGCATTT-GACAAAGCACATCCACCTGGGCTTCCATTTATCATTGCTATTATTATATTTTATTATTATTTT 

Rat Slc7a2      AGAAAGTGATACTTTT-GACAAAGCACATCTATCTAGGCTTCT--------AGTTTATTATAATCATATACTACTATTTT 

Mouse Slc7a2    AGAACGTGATACTTTTTAACAAAGCTCATCTATCTGGGCTTCT--------AGTTTATTATGATCATATACTACTATTTT 

Pig SLC7A2      TGAAA-TAATACTATTTGACAAAGCACTCCCATCTGGGTTCTTTTATCACGAGGTCGTTGTTATATTTTACTATTATTTT 

                 *       * *  **  ******* *  * * ** ** *                 ** * **  * ** ** ****** 

 

Human SLC7A2    CTTATTTCCAAAATCT--TTGTAGAATGGAAAGTAAACGGGGGGAC---------------------CAAAACCCCACTT 

Rat Slc7a2      TATGTTCCCAATTCTCAATGAGAGAGT----------------GAGGGAAAGAGGGAGGGAGAGGAACAAAATCTTGCTT 

Mouse Slc7a2    TATGTTCCCAATTCTCAATGAGAGAGGGAGAGAAAGAGGGAGGGAGGGAGAGAGGGAAGAAGAGGAAAAGAATCCTGCTT 

Pig SLC7A2      CTTATTTACAAATTCC--TCGCAGACTAAAACCTAAATCAAGTCAG------------------GGACAAAATCCCACCT 

                  * **  ***       *   ***         * *    *  *                       * ** *   * * 

 

Human SLC7A2    A---GAACTCTGCTTAGAAGATTCGGAAATGCCCTTG---------------AGGTTTGGTCCTCCCAGGAGAGCACGAA 

Rat Slc7a2      AGAAGAAACCT-CAGAAATGCCCTGCCCCCACCCCCCCACACACACACATTGAGATTGGGTTCTGCCAAGAGA-----GC 

Mouse Slc7a2    AGAAGAAACCT-CAGAAATGTCCCCCACCCCACCCCC---------------AGATTGGGTTCTGCCAAGGAAAAGGGGC 

Pig SLC7A2      GAAGGAACTCTGCTTAGAAGCCTCGGAGATGGCCCTG---------------AGTTTGGGTCCT-CCATGGAAGGCAAGA 

                       ***  ** *  * * *            **                  ** ** *** ** *** *  *        

 

Human SLC7A2    GTTTATCCTCGCGCGCAG-----CCTCTCTTCCCCGGCCCGCGCCCACCG-----------------GCCTAGCCCGGGG 

Rat Slc7a2      GTTTTCCCTCTGCCAAG------CCCTGCGTCTCGGACCCACGCCCACCC---------ACCTACCCACCCAGC---GAG 

Mouse Slc7a2    ATTTCCCCTCTGCCAAA------CCCTGCGTCTCCGACCCACGCCCACCC---------ACC-------CCAGC---GGG 

Pig SLC7A2      ATTCACCCTCCGCTGGGTGTGCCCTCCTCCCGCCCGACCTGCCCCCACTGCTCTCCGGAGCCCACCCGCCCAGCCCCAGG 

                 **   ****             *    *    * * **  * *****                     * ***     * 

 

Human SLC7A2    CTAGCGCCCGC-CCACGTGTGCTCGGCTCCAGGCA--AACCCCG---------CTGAGCAGCGGCCGCACACCGCCCACC 

Rat Slc7a2      CAAGCTTGTAA-CCACGTGTGCCTACACCCTGGCCCTGACCCTA------CAGAGGCGCGGAG-CTAGACACCGCCTTCC 

Mouse Slc7a2    CAAGCGTGTAATCCACGTGCGCGCGCGCCCTGATCCTGACCCTGACCTTTCAGAAGCTTGGAG-TTAGACACCGCCTTCC 

Pig SLC7A2      CAAGCGCACGC-CCACGTGTGCCACCGCTCGGGGAGGGAGACTGAAC---TAGCGGCGTTGCGACCGGACGCCGCCTACC 

                * ***       ******* **       * *      *  *             *    * *     ** *****  ** 

 

Human SLC7A2    CCGGGGATTGGTCAGCGCGGCCG--GGGCCCGGCGGGAGGCGGGCTC-GGGGTCGCGTTCCGGGAGCGCGGAGGAGGCGG 

Rat Slc7a2      T-GGAATCT---CAGCGTGCCTG--------GAGGGGACGAGCGCTCCAGGAGGGGGTCGCGAGCGCGAGGGAGGGGCGG 

Mouse Slc7a2    T-GGAGTCT---CTGCGCGCCCGCCCGCCGAGCCGTGACAAACGCTCCAGGCGAGGGTCGCGAGCACGAGGGAGGGGCGG 

Pig SLC7A2      C-CAGGATTGGCCGGCGCGGTGG--------GGCGGGAGGCGGGCTCGGGTGGGGGGGTCTGAGAGCGCGGGAGAGAGAA 

                        *   * *** *   *        *  * **     ****  *    * *    * *  ** **  * *     

 

Human SLC7A2    TGCCGCCC---------------GGCCCCGC-GCCCCGCCC---------CCGCCCCGG-GTGGCTACACAGAGGG---- 

Rat Slc7a2      AACGGCCCTGCCCTCGAGGCCCCGCCCTCGCGGCCCCGCCC---TTCGCCCCGCCCCTCCGCTTCTACTCAGAGGGTTGC 

Mouse Slc7a2    GACGGCCC------------CCGCCCCTCGCTGCCCCGCCCCACTCCGCCCCGCCCCTCCGCCTCTACTCAGAGGG---- 

Pig SLC7A2      GGGGGGCG----------GTTCCACCCGGGCAGCCCCGCCC--------CCGGCGCGGCTACACCAGCT----------- 

                    * *                  **  ** *********         * ** *        *  *             

 

Human SLC7A2    ----GCGCCCACGTGCCCAGCCC  

Rat Slc7a2      CCACGTGCCCACGTGCCCAGCCC  

Mouse Slc7a2    ----GTGCCCACGTGCCCAGCCC   

Pig SLC7A2      ----GCGCCCACGTGCCCAGTCC   

                    * ************** **  

 

Supplementary Figure 2. Alignment of proximal promoters of SLC7A2 in multiple species. Promoter sequences were downloaded from 
ENSEMBL. The last base corresponds to the peak of transcription initiation for the gene in mouse and human based upon the data from 
the FANTOM Consortium (Ref 10) on the Zenbu browser (http://fantom.gsc.riken.jp/zenbu/. ). Red highlight indicates the purine-rich element 
highlighted in Ref 31, which is not conserved in rat. However, note that both species have at least two candidate PU.1 sites containing the 
GGAA core (underlined). 
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