152 research outputs found

    The beneficial role of green bonds as a new strategic asset class: Dynamic dependencies, allocation and diversification before and during the pandemic era

    Get PDF
    The paper proposes a full comprehensive analysis of green bond diversification benefits, their co-movement with multiple market indices, and the corresponding implications for portfolio allocation. Based on a time frame of seven years, divided into four sub-periods, the co-movements of green-bond indices, i.e. Solactive Green Bond Index and Bloomberg Barclays MSCI Green Bond Index, and the stock/bond market have been described, shedding light on the connections with sectors most affected by the Covid-19 pandemic. The Solactive Green Bond Index is found to provide the greater diversification benefit of the two green-bond indices, on average during the seven years and also during the pandemic. Allocation strategies and risk performances have also been analyzed to assess the impact of green-bond indices on otherwise traditional portfolios; their diversification power is discussed by use of traditional measures and an additional behavioral approach, drawing attention to its evolution in time and its consistency in terms of diminished risks and increased returns. Portfolios constructed with the inclusion of green bonds prove preferable in terms of risk, in all periods and for all strategies, while the superiority of returns depends on the allocation strategy

    Evidence of "crossed" transitions in dots-in-a-well structures through waveguide absorption measurements

    Get PDF
    In-plane absorption measurements were performed at room temperature by means of a waveguide transmission setup on a Stranski-Krastanov InAs dots-in-a-well system emitting at 1.3 mu m embedded in a p-i-n structure. The polarization dependence of quantum dot (QD) absorption was exploited to resolve its discrete and continuous spectral components and study them separately under reverse bias application. The quantum confined Stark effect observed in the discrete spectral component gave evidence of an upward built-in QD dipole of about 9.5x10(-29) C m. The continuous component was found to originate from electronic transitions involving a QD state and a quantum well state. (C) 2008 American Institute of Physics. (DOI: 10.1063/1.3000381

    Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control

    Get PDF
    Engineering the spectral properties of fluorophores, such as the enhancement of luminescence intensity, can be achieved through coupling with surface plasmons in metallic nanostructures This process, referred to as metal-enhanced fluorescence, offers promise for a range of applications, including LEDs, sensor technology, microarrays and single-molecule studies. It becomes even more appealing when applied to colloidal semiconductor nanocrystals, which exhibit size-dependent optical properties, have high photochemical stability, and are characterized by broad excitation spectra and narrow emission bands. Other approaches have relied upon the coupling of fluorophores (typically organic dyes) to random distributions of metallic nanoparticles or nanoscale roughness in metallic films. Here, we develop a new strategy based on the highly reproducible fabrication of ordered arrays of gold nanostructures coupled to CdSe/ZnS nanocrystals dispersed in a polymer blend. We demonstrate the possibility of obtaining precise control and a high spatial selectivity of the fluorescence enhancement process

    The Seascape of Demersal Fish Nursery Areas in the North Mediterranean Sea, a First Step Towards the Implementation of Spatial Planning for Trawl Fisheries

    Get PDF
    The identification of nursery grounds and other essential fish habitats of exploited stocks is a key requirement for the development of spatial conservation planning aimed at reducing the adverse impact of fishing on the exploited populations and ecosystems. The reduction in juvenile mortality is particularly relevant in the Mediterranean and is considered as one of the main prerequisites for the future sustainability of trawl fisheries. The distribution of nursery areas of 11 important commercial species of demersal fish and shellfish was analysed in the European Union Mediterranean waters using time series of bottom trawl survey data with the aim of identifying the most persistent recruitment areas. A high interspecific spatial overlap between nursery areas was mainly found along the shelf break of many different sectors of the Northern Mediterranean indicating a high potential for the implementation of conservation measures. Overlap of the nursery grounds with existing spatial fisheries management measures and trawl fisheries restricted areas was also investigated. Spatial analyses revealed considerable variation depending on species and associated habitat/depth preferences with increased protection seen in coastal nurseries and minimal protection seen for deeper nurseries (e.g. Parapenaeus longirostris 6%). This is partly attributed to existing environmental policy instruments (e.g. Habitats Directive and Mediterranean Regulation EC 1967/2006) aiming at minimising impacts on coastal priority habitats such as seagrass, coralligenous and maerl beds. The new knowledge on the distribution and persistence of demersal nurseries provided in this study can support the application of spatial conservation measures, such as the designation of no-take Marine Protected Areas in EU Mediterranean waters and their inclusion in a conservation network. The establishment of no-take zones will be consistent with the objectives of the Common Fisheries Policy applying the ecosystem approach to fisheries management and with the requirements of the Marine Strategy Framework Directive to maintain or achieve seafloor integrity and good environmental status.Versión del editor4,411

    Benchmarking LHC background particle simulation with the CMS triple-GEM detector

    Get PDF
    In 2018, a system of large-size triple-GEM demonstrator chambers was installed in the CMS experiment at CERN\u27s Large Hadron Collider (LHC). The demonstrator\u27s design mimicks that of the final detector, installed for Run-3. A successful Monte Carlo (MC) simulation of the collision-induced background hit rate in this system in proton-proton collisions at 13 TeV is presented. The MC predictions are compared to CMS measurements recorded at an instantaneous luminosity of 1.5 ×1034^{34} cm−2^{-2} s−1^{-1}. The simulation framework uses a combination of the FLUKA and GEANT4 packages. FLUKA simulates the radiation environment around the GE1/1 chambers. The particle flux by FLUKA covers energy spectra ranging from 10−11^{-11} to 104^{4} MeV for neutrons, 10−3^{-3} to 104^{4} MeV for γ\u27s, 10−2^{-2} to 104^{4} MeV for e±^{±}, and 10−1^{-1} to 104^{4} MeV for charged hadrons. GEANT4 provides an estimate of the detector response (sensitivity) based on an accurate description of the detector geometry, the material composition, and the interaction of particles with the detector layers. The detector hit rate, as obtained from the simulation using FLUKA and GEANT4, is estimated as a function of the perpendicular distance from the beam line and agrees with data within the assigned uncertainties in the range 13.7-14.5%. This simulation framework can be used to obtain a reliable estimate of the background rates expected at the High Luminosity LHC

    Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation

    Get PDF
    The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7th^{th} of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil. The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, pshort_{short}HV^{HV} OFF^{OFF} = 0.42−0.35+0.94^{-0.35+0.94}% with detector HV OFF and pshort_{short}HV^{HV} OFF^{OFF} < 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure

    Triple-GEM discharge probability studies at CHARM: Simulations and experimental results

    Get PDF
    The CMS muon system in the region with 2.03<|η|<2.82 is characterized by a very harsh radiation environment which can generate hit rates up to 144 kHz/cm2^{2} and an integrated charge of 8 C/cm2^{2} over ten years of operation. In order to increase the detector performance and acceptance for physics events including muons, a new muon station (ME0) has been proposed for installation in that region. The technology proposed is Triple—Gas Electron Multiplier (Triple-GEM), which has already been qualified for the operation in the CMS muon system. However, an additional set of studies focused on the discharge probability is necessary for the ME0 station, because of the large radiation environment mentioned above. A test was carried out in 2017 at the Cern High energy AcceleRator Mixed (CHARM) facility, with the aim of giving an estimation of the discharge probability of Triple-GEM detectors in a very intense radiation field environment, similar to the one of the CMS muon system. A dedicated standalone Geant4 simulation was performed simultaneously, to evaluate the behavior expected in the detector exposed to the CHARM field. The geometry of the detector has been carefully reproduced, as well as the background field present in the facility. This paper presents the results obtained from the Geant4 simulation, in terms of sensitivity of the detector to the CHARM environment, together with the analysis of the energy deposited in the gaps and of the processes developed inside the detector. The discharge probability test performed at CHARM will be presented, with a complete discussion of the results obtained, which turn out to be consistent with measurements performed by other groups

    Detector Control System for the GE1/1 slice test

    Get PDF
    Gas Electron Multiplier (GEM) technology, in particular triple-GEM, was selected for the upgrade of the CMS endcap muon system following several years of intense effort on R&D. The triple-GEM chambers (GE1/1) are being installed at station 1 during the second long shutdown with the goal of reducing the Level-1 muon trigger rate and improving the tracking performance in the harsh radiation environment foreseen in the future LHC operation [1]. A first installation of a demonstrator system started at the beginning of 2017: 10 triple-GEM detectors were installed in the CMS muon system with the aim of gaining operational experience and demonstrating the integration of the GE1/1 system into the trigger. In this context, a dedicated Detector Control System (DCS) has been developed, to control and monitor the detectors installed and integrating them into the CMS operation. This paper presents the slice test DCS, describing in detail the different parts of the system and their implementation
    • …
    corecore