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A B S T R A C T

The paper proposes a full comprehensive analysis of green bond diversification benefits, their co-movement
with multiple market indices, and the corresponding implications for portfolio allocation. Based on a time
frame of seven years, divided into four sub-periods, the co-movements of green-bond indices, i.e. Solactive
Green Bond Index and Bloomberg Barclays MSCI Green Bond Index, and the stock/bond market have been
described, shedding light on the connections with sectors most affected by the Covid-19 pandemic. The
Solactive Green Bond Index is found to provide the greater diversification benefit of the two green-bond
indices, on average during the seven years and also during the pandemic. Allocation strategies and risk
performances have also been analyzed to assess the impact of green-bond indices on otherwise traditional
portfolios; their diversification power is discussed by use of traditional measures and an additional behavioral
approach, drawing attention to its evolution in time and its consistency in terms of diminished risks and
increased returns. Portfolios constructed with the inclusion of green bonds prove preferable in terms of risk,
in all periods and for all strategies, while the superiority of returns depends on the allocation strategy.
1. Introduction

The green bond market has enjoyed a rapid expansion over the last
decade and recently moved from the previous global record issuance of
$ 269.5 billion in 2020 (Jones, 2021), to a new record: $522.7 billion in
2021 (Jones, 2022). The interest in this type of fixed-income security,
the proceeds of which are committed to climate and environmental
projects, has surged together with environmental, social and gover-
nance (ESG) concerns, and with the more widespread awareness of
environmental risks following the COVID-19 pandemic. On 21 October
2021, the world’s largest green bond issue took place, raising a total
of e12 billion. It was the issuance of the NextGenerationEU bonds,
the first ever by the European Commission, and was met with an 11-
fold demand surplus, as reported in the European Commission Press
Release (2021). The supranational entity plans the issue of up to e250
billion in green bonds by the end of 2026. A further development of this
market has been the creation of a EU green bond standard (European
Commission, 2021), a currently voluntary tool which allows investors
and issuers to ensure the green status of the funded projects. Interest
in green bonds has come from individual investors, as well as from
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private financial institutions and funds. The motivations behind it are
not limited to a personal sensitivity towards green issues: the clear
direction of national and supranational investments and policies signal
rapid development and the potentially great impact of this area. The
behavior of the green bond market in moments of market growth and
downturn is of great importance, because evidence of diversification
benefits or safe-haven properties of this asset class could offer a further
incentive for its inclusion in more and more portfolios. This would
drive up demand (and funding) for green investments and accelerate
the transition to a sustainable economy.

The goal of this paper is to investigate the potential diversification
benefit provided by green bonds, in order to find for which financial
assets, investment strategies and risk-aversion levels it is strongest,
based on asset co-movement and portfolio performance. We study the
Bloomberg Barclays MSCI Green Bond Index and the Solactive Green
Bond Index from October 2014 to June 2021, tracking the change
in their dependence with a variety of sectors, with a special focus
on the Covid-19 pandemic. We build on the extant literature on the
relationship between green bonds and other asset classes by not only
considering indices of global equity and of corporate bonds, but also
of the key over- and under-performing industries during the pandemic:
vailable online 4 March 2023
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energy commodities, airlines, technology and healthcare. We addition-
ally divide the analysis in different periods, according to the prevalent
equity market conditions (bull, bear, pre-pandemic and pandemic), in
order to highlight any fundamental changes in the dependence struc-
ture across time. We furthermore go beyond the theoretical analysis of
correlations and co-movements and create portfolios based on a variety
of allocation strategies, tracking their performance during the different
sub-periods. We consider portfolios which include green bonds and
others which exclude them, in order to highlight their differences along
a number of risk measures. Among them, we insert a diversification
index and a spectral risk measure, the latter of which extends the
analysis to an area yet to be explored by the existing literature: the
behavioral dimensions of risk-aversion and utility. This enables us to
identify the allocation strategies and the investor risk preferences which
lead to a larger request for investment in green bonds. It also highlights
which of the two green-bond indices offers the greater diversification
benefit.

The work is organized as follows: Section 2 introduces the previous
literature and Section 3 describes the sample and performs preliminary
analyses on the asset returns. Section 4 fits DCC-GARCH models and
dynamic copulas to each pair of assets, for each sub-period, in order
to highlight the values and the changes in pairwise dynamic condi-
tional correlation between them. Pairwise empirical tail dependence
is also computed and the sectors for which green bonds provide the
greater diversification benefit are highlighted. The benefit offered by
the two green indices, in terms of magnitude of the correlations, is also
compared. Section 5 tackles portfolio construction with and without
green bonds, carrying out in-sample and out-of-sample performance
analysis, based on a number of indicators. The profile of the investors
who would benefit from green bonds can then be deduced, in terms of
their preferred asset allocation strategy and risk-aversion level. Finally,
Section 6 concludes the paper with a summary of the findings.

2. Literature review

Over the last few years, a number of studies has emerged, focus-
ing on the financial properties of green bonds. The positive effect of
this asset class on the issuer’s stock price as well as on its environ-
mental and financial performances has been highlighted in Flammer
(2021) and in Tang and Zhang (2020). The existing literature on the
subject of green bond and market co-movement includes Reboredo
(2018) and Reboredo and Ugolini (2020), that find a strong link with
the corporate and treasury bond markets and with currencies, and
weak links with a number of traditional commodities, including energy
prices. Elsayed et al. (2022) perform a time–frequency analysis before
and until the early stages of the COVID-19 pandemic (June 2020). They
uncover evidence suggesting that the diversification benefits provided
by the Bloomberg Barclays MSCI Green Bond Index with respect to
the financial market considered in Reboredo (2018), are stronger for
shorter-term horizons, while they are weaker for longer ones. In our
analysis of co-dependencies, we expand on this in a number of ways:
we include the Solactive Green Bond Index, which proves to have
a greater diversification benefit than the Bloomberg Barclays MSCI
Green Bond Index, and the indices of the sectors most affected by
the Covid-19 pandemic, in order to consider a pandemic-specific range
of benchmarks. We then extend the analysis by focusing on pairs of
indices, composed of one green-bond and one non-green index, and
analyzing them not only over the entire window of observation but also
within different sub-periods, with pandemic data reaching June 2021.
In Naeem et al. (2021), the green bond market has been found to be
more efficient than that of conventional corporate bonds during the
Covid-19 pandemic, while less efficient in the full sample period. This
shows the diversification potential of green bonds in times of extreme
market turmoil. Arif et al. (2022) focus on the hedging and safe haven
properties of green bonds during the pandemic, by measuring their
association with a number of conventional investments, and finding
2
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them to be good hedging and safe haven instruments for currency and
commodity investments. A less analyzed area is that of the potential
benefits derived from the actual, practical inclusion of green bonds
in a portfolio. Initial evidence has been presented in Han and Li
(2020), where performance is shown to be enhanced by the inclusion of
green bonds in an otherwise traditional portfolio of Chinese assets. Our
work has the goal of testing a hypothesis affine to the finding of Han
and P. Li (2020), but extended to the global market. Additionally, it
seeks to identify which financial assets, investment strategies and risk-
aversion levels enjoy the strongest diversification benefit from green
bonds, based on asset co-movement and portfolio performance, and
distinguishing between sub-periods, before and during the Pandemic
era.

3. Preliminary analysis

3.1. Sample description

The analysis in this paper has been carried out on the time series of
eight market indices.

The global equity market is represented by the MSCI World Index
(denoted by MSCI), which includes large and mid-cap stocks across
twenty-three developed-market countries, while the traditional bond
market is represented by the Bloomberg Barclays Global Aggregate
Total Return Index (BBBOND), which is a measure of global invest-
ment grade debt including treasury, government-related, corporate and
securitized fixed-rate bonds.

The global green bond market is represented by two indices: the
Bloomberg Barclays MSCI Green Bond Index (BBGB) and the Solactive
Green Bond Index (SOLGB). Both are in line with the Climate Bond
Taxonomy, a guide to climate-aligned assets and projects developed by
the Climate Bonds Initiative, and have been introduced in 2014 (The
GBP Databases and Indices Working Group, 2017).

Both have been used as benchmarks for the green-bond market
in past literature: BBGB in Elsayed et al. (2022), Reboredo (2018),
and Reboredo and Ugolini (2020), whereas SOLGB was used in Arif
et al. (2022) and Naeem et al. (2021). We consider both indices
simultaneously in order to enrich the characterization of the green-
bond market, by investigating whether they provide different potential
diversification benefits to investors.

The two indices differ in the following ways: BBGB is calculated by
Bloomberg Index Services Limited, the same entity behind BBBOND,
and includes its same local currency debt markets — leading to an
expected high correlation with that index. This overlap in markets
is not present for SOLGB, which is furthermore calculated by a dif-
ferent provider: Solactive AG. Additionally, BBGB includes corporate,
treasury, and securitized bonds, but its largest portion is made up of
government-related bonds (Bloomberg Barclays Indices, 2021). SOLGB
is instead mostly composed of corporate bonds. Moreover, BBGB only
considers investment-grade bonds, whereas SOLGB also includes non-
investment grade bonds (Solactive, 2021). While there is no minimum
time to maturity for the bonds in BBGB, SOLGB imposes one of six
months (Solactive, 2022). Both indices are market-value weighted, but
there is a cap of 5% to the weight of each bond in SOLGB (which
is lifted in case of technical unfeasibility). Furthermore, the two in-
dices impose different minimum outstanding issue size requirements
to bonds: 300 million for the US dollar market for BBGB (but differing
across currency markets) and $100 million for SOLGB. Finally, BBGB
imposes additional sustainability requirements, beyond the Climate
Bond Taxonomy. Bonds are included only if they satisfy the criteria
of MSCI ESG Research: the use of proceeds must fall within six eligible
environmental categories,1 which are broadly aligned with the Green

1 The MSCI ESG Research environmental categories include alternative
nergy, energy efficiency, pollution prevention, sustainable water, green
uilding, climate adaptation.
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Table 1
Descriptive statistics of returns for the full period (October 2014–June 2021).

BBGB SOLGB BBBOND MSCI SPGSEN

Mean 0.00008 0.00011 0.00009 0.00037 −0.00009
Minimum −0.01938 −0.01823 −0.02200 −0.10442 −0.30173
Maximum 0.00828 0.01340 0.01526 0.08406 0.17376
Std. Deviation 0.00185 0.00256 0.00294 0.00962 0.02465
Skewness −1.14164 −0.55897 −0.53765 −1.49760 −1.24810
Kurtosis 9.71114 4.80359 5.26860 23.83639 23.15864
J-B Test P-Value 0.00000 0.00000 0.00000 0.00000 0.00000

Bond Principles (GBP).2 The bonds must also be aligned with the
four dimensions defined by MSCI ESG Research3 (Bloomberg Barclays
Indices, 2021).

The energy commodity market is represented by the S&P GSCI
Energy Index (SPGSEN), a sub-index of the S&P GSCI, which includes
futures traded on commodity exchanges and which reflects the dy-
namics of energy prices. Finally, three additional market indices have
been considered in the analysis, going beyond Reboredo (2018) and El-
sayed et al. (2022). They have been selected because of their behavior
during the pandemic, as they represent sectors which performed very
negatively or positively during that time. These indices are:

• S&P 500 Airlines (SP5IAIR) for the airline sector;
• S&P 500 Health Care (SP5EHCR) for the healthcare sector;
• S&P 500 Euro Information Technology (SPEUIT) for the technol-

ogy sector.

The overall sample is composed of closing daily prices from 15/10/
2014 to 07/06/2021, for a total of 1727 observations per asset.

In order to study the features of the green-bond indices and their
relationship with other financial sectors under different market con-
ditions, the full sample period has been divided into four sub-periods
according to the performance of the MSCI Wold Index.

The sub-periods are the following:

• the ‘‘bear market’’ sub-period, from June 2015 to April 2016, a
time of stock market downturn;

• the ‘‘bull market’’ sub-period, from December 2016 to January
2018, during which the stock market exhibited strong growth;

• the ‘‘pre-pandemic’’ sub-period, from January 2019 to 3rd March
2020;

• the ‘‘pandemic’’ sub-period, from the 4th of March 2020 to the
7th of June 2021.

3.2. Return analysis

3.2.1. Full sample 2014–2021
The analysis of market indices starts with their log-returns, as

represented in the following formula:

𝑋𝑡 = ln
(

𝑃𝑡
𝑃𝑡−1

)

where 𝑃𝑡 is the price in 𝑡.
Table 1 contains the main descriptive statistics of the five indices

of interest for the full period analysis, which are the two green-bond
indices, the bond market index, the stock market index and the energy
commodity index.

2 The GBP is a 2014 agreement, published by a consortium of banks, on a
et of standards designed to allow investors to assess the green credentials of
reen-labeled bonds.

3 The MSCI ESG Research dimensions are: criteria for the use of proceeds,
rocess for project evaluation and selection, management of proceeds, and
3

eporting on the actual use of funds.
Table 2
Descriptive statistics of returns during the four sub-periods.

BBGB SOLGB BBBOND MSCI SPGSEN

Bear period
Mean 0.00014 0.00008 0.00025 −0.00043 −0.00171
Minimum −0.00721 −0.01823 −0.01109 −0.03794 −0.07726
Maximum 0.00443 0.00965 0.01526 0.02565 0.08853
Std. Dev. 0.00185 0.00345 0.00354 0.00937 0.02597
Bull period
Mean 0.00004 −0.00013 0.00026 0.00085 0.00084
Minimum −0.00464 −0.00754 −0.01650 −0.01246 −0.04344
Maximum 0.00353 0.00682 0.01053 0.01594 0.03913
Std. Dev. 0.00150 0.00226 0.00307 0.00373 0.01326
Pre-pandemic
period
Mean 0.00031 0.00037 0.00031 0.00049 −0.00015
Minimum −0.00662 −0.00751 −0.00604 −0.03669 −0.06817
Maximum 0.00605 0.00727 0.00689 0.03274 0.12142
Std. Dev. 0.00194 0.00212 0.00214 0.00738 0.01823
Pandemic
period
Mean −0.00004 −0.00009 0.00011 0.00098 0.00107
Minimum −0.01938 −0.01617 −0.02200 −0.10442 −0.30173
Maximum 0.00828 0.00884 0.01490 0.08406 0.17376
Std. Dev. 0.00250 0.00260 0.00324 0.01626 0.03928

Daily average returns are very small for all considered time series.
The standard deviations obtained indicate that the green-bond indices
are the least volatile: they are equal to 0.185% for the Bloomberg
Barclays MSCI Green Bond Index (BBGB) and 0.256% for the Solac-
tive Green Bond Index (SOLGB). The energy commodity market index
(SPGSEN) shows the greatest volatility among the five indices, as it is
equal to 2.465%, followed by the stock market index (MSCI) which
shows a standard deviation equal to 0.962%. Skewness and kurtosis
coefficients suggest left-skewed and leptokurtic distributions for all
time series: the skewness value is always negative and the kurtosis
is greater than 3. The infinitesimal p-values of the Jarque–Bera test
indicate that the returns are not normally distributed.

3.2.2. Sub-periods
Table 2 shows basic descriptive statistics of the five indices during

the four sub-periods. The conclusions drawn from the observation of
full-period values are confirmed by the values of sub-period statistics:
the average returns of all indices remain around 0 and green-bond
indices show the smallest standard deviations. In particular, the two
indices show low volatility also during stock market stress periods, such
as the bear and the pandemic sub-periods.

Finally, Table 3 shows basic descriptive statistics of the three in-
dices which are of interest during the pre-pandemic and the pan-
demic sub-periods: the S&P500 Airlines (SP5IAIR), S&P500 Health Care
(SP5EHCR) and the S&P500 Euro Information Technology (SPEUIT).
These sectors are chosen because the first suffered losses and instability
leading up to and during the pandemic sub-period, due to travel bans
and to a general decrease in the number of flights, while the other
two experienced extraordinary growth with respect to the rest of the
market.

4. Analysis of market relationships

The objective of this analysis is to explore the relationships between
the green-bond market, on the one hand, and the stock market, the
corporate bond market, and the indices of some key sectors which stood
out during the pandemic, on the other. This is done in order to identify
the sectors for which green bonds provide the greater diversification
benefit, and during which sub-periods. The benefit offered by the
two green indices, in terms of magnitude of the correlations, is also
compared. The final aim is to evaluate the implications in terms of

portfolio management.
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Table 3
Descriptive statistics of sector indices during the Pre-
pandemic and Pandemic sub-periods.

SP5IAIR SP5EHCR SPEUIT

Pre-pandemic
period
Mean −0.00066 0.00035 0.00086
Minimum −0.07442 −0.03388 −0.04360
Maximum 0.04548 0.04713 0.05071
Std. Dev. 0.01472 0.00932 0.01283
Pandemic
period
Mean 0.00043 0.00079 0.00137
Minimum −0.22438 −0.10528 −0.12358
Maximum 0.17756 0.07314 0.09847
Std. Dev. 0.04310 0.01683 0.02094

Examining the potential co-movement of green bonds and financial
arkets is important, both in order to understand the impact of this

ink, as well as to highlight the potential diversification benefits derived
rom the inclusion of green bonds in a portfolio.

We expand on the analysis of Reboredo (2018) and Elsayed et al.
2022) by including the data of the pandemic (about one additional
ear with respect to Elsayed et al. (2022)) and the sector indices that
ad outstanding negative and positive performances in that time. Addi-
ionally, we divide the timeline in different sub-periods, depending on
verall market conditions, in order to study the corresponding changes
n relationships. Furthermore, we expand on those papers by including

focus on portfolio allocation in the next section, with the aim of
dentifying the risk profile and the strategy of the investors that could
enefit more from the inclusion of green bonds in their portfolios. The
ivision of the time window enables the identification of the indices for
hich green bonds act as diversifiers or as safe heaven assets — thus
eepening the work of Arif et al. (2022) and that of Naeem et al. (2021).
he former concentrates on this topic but analyzes the more traditional

nvestment sectors of equity, fixed income, commodity, and currency
nvestments, while the latter only considers the traditional corporate
ond market.

In order to characterize the market dynamics between green bonds
nd financial indices, the DCC (Dynamic Conditional Correlation)
ARCH model is used. This setting allows for the modeling of rela-

ionships between two or more assets in terms of dynamic correlation
nd thus yields a time-varying measure of dependence with an intuitive
nterpretation.

.1. The model

The relationship between the time series of one green-bond index,
n the one hand, and the time series of each of the other consid-
red indices, on the other, is modeled through a bi-variate dynamic
opula (Meucci, 2011). The dynamic copula is conditionally elliptical
nd dependent on a time-varying correlation matrix 𝑹𝑡+1, which is

completely known at time 𝑡, and that evolves following the DCC model
introduced in Engle (2002).

The starting point of the analysis are the log-returns of each index,
defined as:

𝛥𝑙𝑛(𝑃𝑡) = 𝛥𝑋𝑡 = 𝜇 +
√

ℎ𝑡𝜖𝑡;

lexible probabilities with exponential decay are then set, with a prior
alf-life of 120 days. The flexible probabilities approach attributes a
ime-dependent relative weight to each scenario in the empirical distri-
ution function. Exponential decay probabilities, which are represented
s:

𝑡 ∣ 𝜏𝐻𝐿 ≡ 𝑝𝑒
− ln(2)

𝜏𝐻𝐿
|𝑡∗−𝑡|,

weigh the scenarios as 𝑝 ≡ 1∕
∑

𝑠 𝑒
− ln(2)

𝜏𝐻𝐿
|𝑡∗−𝑠|, where 𝜏𝐻𝐿 > 0 is called

alf-life and determines the time after which the decaying probabilities
4

become one half of a target time 𝑡∗, which in this setting is the most
recent observation.

Autoregressive conditional heteroskedasticity in the log-returns is
detected through Engle (1982)’s ARCH-LM test. A GARCH(1,1) model
is then fit to each time series, the adequacy of the number of lags being
confirmed through the Li and Mak (1994) test, and the innovations
𝜖𝑡 are recovered. The null hypothesis of the Li and Mak (1994) test
is that there are no remaining ARCH effects in the data, which the
GARCH(1,1) model was not able to capture. The hypothesis is not
rejected at the 99% significance level, for all indices and all sub-periods,
therefore the GARCH(1,1) model is considered to be adequate.

In order to assess the best-fitting copula based on the empirical tail
dependence, the scatter-plots displaying the innovations of each green-
bond index against the innovations of each one of the other indices
are analyzed. Pairs displaying little to no empirical tail dependence are
modeled with Gaussian copulas, while pairs displaying a higher level of
tail dependence are modeled with Student t copulas. The corresponding
marginal distributions are used.

The marginal distributions of the innovations of each index 𝑖 are
estimated by fitting the selected Gaussian or Student t distributions via
weighted maximum likelihood (using the previously obtained flexible
probabilities), with known degrees of freedom 𝜈. The appropriate 𝜈
is set to be the same as the degrees of freedom of the copula. The
estimated location parameters of the marginal distributions are close
to 0 in size, taking slightly positive or negative values. The scale
parameters are all larger than 0.5 and only rarely exceed 1.

Each 𝑖th marginal time series of innovations is then mapped into
tandard t or Gaussian realizations, by first computing the estimated
umulative distribution function at each point and then finding the
orresponding standard t (with 𝜈 degrees of freedom) or Gaussian
uantile. This yields the standardized {𝜉𝑖,𝑡}𝑡=𝑇𝑡=0 , i.e.

𝑖,𝑡 ≡ 𝛷−1
𝜈

(

𝐹𝜖𝑖

(

𝜖𝑖,𝑡
)

)

, (1)

where 𝛷−1
𝜈 is the quantile function of a standard Student t distribution

with 𝜈 degrees of freedom, 𝐹𝜖𝑖 is the marginal cumulative distribution
function of the 𝑖th time series of innovations 𝜖𝑖, and 𝜖𝑖,𝑡 is the value of
𝜖𝑖 at time 𝑡. The unconditional variance–covariance matrix is estimated
from the standardized {𝜉𝑖,𝑡}𝑡=𝑇𝑡=0 via weighted maximum likelihood and
the unconditional correlation matrix is obtained from it. The estimate
is improved via factor analysis shrinkage, and the DCC model is fit to
the data.

The degrees of freedom of the bi-variate copulas are calibrated
through a number of steps. First, an analysis of empirical tail depen-
dence is carried out, and pairs of indices displaying zero dependence
in at least one tail (and a negligible one in the other) are modeled
with Gaussian copulas. Afterwards, the entire model is re-run with a
variety of possible degrees of freedom, including the Gaussian case,
for all remaining index couples. The optimal 𝜈 is selected as the one
maximizing the number of innovation pairs falling within the cor-
responding bi-variate expectation-unconditional covariance ellipsoid,
which is defined in detail in Section 4.2.3. The different values of
𝜈 impact the estimated unconditional variance–covariance matrix of
standardized {𝜉𝑖,𝑡}𝑡=𝑇𝑡=0 on which the ellipsoid is based. They do so by
altering the marginal distributions of the innovations (as the location
and scale parameters are estimated by taking the degrees of freedom
as given) and the quantile functions which are used to obtain the
standardized {𝜉𝑖,𝑡}𝑡=𝑇𝑡=0 .

The estimated parameters of the marginal distribution of innova-
tions are reported in Appendix A, while a more detailed explanation of
the calibration steps can be found in Appendix B.

4.1.1. DCC GARCH model
The DCC GARCH model, introduced by Engle (2002), allows for the

quantification of time-varying correlations. There are two steps in the
estimation procedure for dynamic conditional correlation:
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1. Estimation of a univariate GARCH model for conditional volatil-
ity for each of the 𝑛 time series under consideration;

2. Estimation of the DCC model for conditional correlation, using
the standardized residuals resulting from the first step.

The general model equation is:

𝑡 = 𝑫𝑡𝑹𝑡𝑫𝑡, (2)

where 𝑯 𝑡 is the conditional covariance matrix, 𝑫𝑡 is a diagonal matrix
with conditional variances ℎ𝑖,𝑡 on the diagonal and 𝑹𝑡 is the time-
varying correlation matrix. The conditional variance ℎ𝑖,𝑡 is estimated
with a univariate GARCH(𝑄𝑖, 𝑃𝑖) model as:

ℎ𝑖,𝑡 = 𝜔𝑖 +
𝑃𝑖
∑

𝑝=1
𝛼𝑖,𝑝(𝛥𝑥𝑖,𝑡−𝑝 − 𝜇𝑖)2 +

𝑄𝑖
∑

𝑞=1
𝛽𝑖,𝑞ℎ𝑖,𝑡−𝑞 , (3)

where 𝑖 = 1, 2,… , 𝑛 are the market indices, 𝛥𝑥𝑖,𝑡−𝑝 is the value of the
log return of index 𝑖 at time 𝑡−𝑝, 𝜇𝑖 is the mean return of index 𝑖, ℎ𝑖,𝑡−𝑞
is the value of the conditional variance of index 𝑖 at time 𝑡 − 𝑞, 𝜔𝑖, 𝛼𝑖,𝑝
and 𝛽𝑖,𝑞 are non-negative, and ∑𝑃𝑖

𝑝=1 𝛼𝑖,𝑝 +
∑𝑄𝑖

𝑞=1 𝛽𝑖,𝑞 < 1 ∀𝑖.
The residuals and the conditional variances ℎ𝑖,𝑡 are thus obtained

and then used in order to recover the standardized residuals 𝒖𝑡, with
individual elements:

𝑢𝑖,𝑡 =
𝛥𝑥𝑖,𝑡 − 𝜇𝑖
√

ℎ𝑖,𝑡
,

here 𝑖 = 1, 2,… , 𝑛. These are then used for the estimation of the
ynamic conditional correlation matrix 𝑹𝑡, given by:

𝑹𝑡 = 𝑑𝑖𝑎𝑔
{

𝑸𝑡
}−1∕2 𝑸𝑡𝑑𝑖𝑎𝑔

{

𝑸𝑡
}−1∕2 , (4)

where 𝑸𝑡 is a positive-definite quasi correlation matrix. The structure
of the dynamic correlation depends from the following equation:

𝑸𝑡 = (1 − 𝑎 − 𝑏)�̄� + 𝑎𝒖𝑡−1𝒖′𝑡−1 + 𝑏𝑸𝑡−1, (5)

where �̄� is the unconditional correlation matrix of the standardized
residuals, 𝑸𝑡−1 is the one-period lagged value of the quasi correlation
matrix, and 𝒖𝑡−1 is the one-period lagged value of the standardized
residuals. Coefficients 𝑎 and 𝑏 measure, respectively, the short- and
long-term persistence of dynamic conditional correlation.

Element 𝜌𝑖𝑗,𝑡 of the conditional correlation matrix 𝑹𝑡 can be ex-
pressed with the following typical representation for correlations: 𝜌𝑖𝑗,𝑡 =𝑞𝑖𝑗,𝑡
√𝑞𝑖𝑗,𝑡𝑞𝑖𝑗,𝑡

. In our setting, the standardized residuals are set to be {𝒖𝑡}𝑡=𝑇𝑡=0 =

{𝜉𝑡}𝑡=𝑇𝑡=0 , as defined in Eq. (1).

.2. Results

For all indices and across all periods, the estimated GARCH 𝛽
coefficients are larger than the estimated GARCH 𝛼 coefficients: all
returns are thus more sensitive to past volatility than to their own
past behavior, regardless of the prevailing market conditions. As for
the DCC coefficients, across all periods and for all pairs of indices,
𝑎 coefficients are substantially more moderate in size than 𝑏 coeffi-
ients, indicating that the time-varying correlation has low sensitivity
o previous standardized shocks, but has a high degree of persistence.
ifferences among same-period coefficients are very small. The esti-
ates of GARCH and DCC parameters are reported in Appendix C, for

ll sub-periods.
The following paragraphs present an analysis of the dynamic con-

itional correlation (DCC) values between pairs of indices composed
f a green bond index, on the one hand, and each remaining index,
n the other. This is done to shed light on the directional dependence
etween the pairs of time series, which is taken as a proxy of the
iversification potential of each green bond index. The goal is to
dentify the sectors and the sub-periods for which green bonds provide
he greater diversification benefit. The benefit offered by the two green
ndices, in terms of magnitude of the correlations, is also compared.
5

Table 4
DCC summary of BBGB pairs.

All periods Average Minimum Maximum Std deviation

SOLGB 0.752473 0.380372 0.928359 0.127813
BBBOND 0.578999 0.406788 0.731149 0.072957
MSCI −0.078677 −0.347012 0.165301 0.101870
SPGSEN −0.136682 −0.363508 0.052892 0.070578
SP5IAIR −0.155266 −0.357271 0.070916 0.080379
SP5EHCR −0.044269 −0.234361 0.154384 0.069731
SPEUIT −0.009498 −0.220451 0.172524 0.072298

Bear

SOLGB 0.532480 0.354279 0.738887 0.112694
BBBOND 0.414948 0.064887 0.638074 0.137683
MSCI −0.381140 −0.575365 0.042416 0.121471
SPGSEN −0.274066 −0.373865 −0.060968 0.056496
SP5IAIR −0.199939 −0.360271 −0.011433 0.068980
SP5EHCR −0.233404 −0.336478 0.020414 0.069384
SPEUIT −0.375234 −0.615490 −0.124222 0.129710

Bull

SOLGB 0.530387 0.228464 0.692805 0.132767
BBBOND 0.617802 0.414612 0.734160 0.055230
MSCI −0.088421 −0.315148 0.159594 0.108690
SPGSEN 0.005143 −0.249888 0.184793 0.101964
SP5IAIR −0.190637 −0.291634 −0.091162 0.046846
SP5EHCR −0.090297 −0.295530 0.228860 0.117507
SPEUIT 0.069187 −0.140331 0.269416 0.107077

Pre-pandemic

SOLGB 0.901530 0.874081 0.926579 0.012567
BBBOND 0.753216 0.717051 0.786991 0.018722
MSCI −0.314823 −0.406214 −0.129949 0.065294
SPGSEN −0.175859 −0.317256 0.024311 0.050090
SP5IAIR −0.336718 −0.442960 −0.188054 0.064937
SP5EHCR −0.220933 −0.321952 −0.107759 0.046900
SPEUIT −0.185771 −0.306168 −0.030873 0.068398

Pandemic

SOLGB 0.879867 0.841127 0.904335 0.013973
BBBOND 0.555698 0.459872 0.671627 0.050131
MSCI 0.045741 −0.058213 0.194189 0.070451
SPGSEN −0.108563 −0.196312 0.053603 0.060421
SP5IAIR −0.104631 −0.313799 0.183844 0.123704
SP5EHCR 0.052432 −0.068429 0.180663 0.066763
SPEUIT 0.060733 −0.035040 0.286485 0.073431

4.2.1. Dynamic conditional correlations: BBGB vs all other indices
Table 4 reports the standard deviations and the average, minimum,

and maximum values of the estimated dynamic conditional correlations
(DCC) between pairs of indices composed of BBGB, on one hand, and
each of the other indices, on the other. The values are presented for the
entire time period and for each sub-period.

The DCC between the two green-bond indices always takes positive
values, but it reaches a minimum during the bull sub-period. During
this time, SOLGB shows a faster growth than BBGB, but is also affected
by a large number of drastic changes in value, in contrast to the greater
stability of BBGB. During the pandemic, the two indices have a very
similar behavior, with their DCC maintaining one of the highest average
values of all sub-periods.

The values of the DCC between BBGB and BBBOND are also always
positive. This is not surprising, as the underlying debt markets con-
sidered by the two indices has a significant overlap. This particular
property allows us to focus on the effect of the ‘‘green’’ component
in relation to the traditional corporate bond market. From Table 4, it
can be seen that the DCC reaches a minimum during the bear sub-
period, when its standard deviation is the highest of all considered
sub-periods. During this time, the corporate bond index displays sub-
stantial volatility, compared to the much lower one of BBGB. The
correlation increases substantially during the bull sub-period, when
both indices grow with the market. It decreases substantially during

the pandemic, when the behavior of the two indices is less strongly
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linked. Overall, the diversification benefit offered by BBGB for investors
in traditional corporate bonds is very limited.

As for the relationship between BBGB and MSCI, their DCC is lowest
during the bear sub-period, when it is negative. It remains negative
but decreases in absolute terms during the bull sub-period, when BBGB
remains stable compared to the consistent growth of MSCI. The corre-
lation then moves towards zero during the pandemic, when it takes
the only positive average value. This evidence indicates a potential
diversification benefit of BBGB for investors in MSCI, which decreases
during the pandemic.

Concerning the energy sector, the DCC between BBGB and the
relevant index, SPGSEN, is lowest during the bear sub-period, when
it is negative. It then moves towards zero during the bull sub-period,
when it takes the only positive average value. It returns to the negative
domain and remains substantially negative during the pandemic. This
suggests a substantial diversification benefit of BBGB for investors in
the energy sector represented by SPGSEN.

The airline industry is represented by the SP5IAIR index. Its DCC
with BBGB barely reaches any positive value, as it is on average
always negative. It is lowest during the pre-pandemic sub-period and
highest during the pandemic, but it still remains negative, indicating a
substantial diversification benefit of BBGB with respect to the airline
industry throughout the entire period, including the pandemic.

As for the healthcare sector, the DCC between SP5HCR and BBGB is
lowest during the pre-pandemic sub-period, as in the case of SP5IAIR.
It increases and becomes slightly positive, on average, during the
pandemic. This evidence points to a potential diversification benefit
offered by BBGB to investors in the healthcare industry, but it also
highlights an increase in dependence in times of growth for SP5HCR.

From Table 4, it can be seen that the DCC between BBGB and
SPEUIT is on average lowest during the bear sub-period, as in the
cases of BBBOND, MSCI and SPGSEN. It increases during the pandemic,
when it reaches a slightly positive value, comparable to that of the bull
sub-period. This indicates a potential diversification benefit offered by
BBGB to investors in the Information Technology (IT) sector, but it also
points to an increase in dependence in times of growth for SPEUIT.

The plots of the dynamic conditional correlations in Table 4 can be
seen in Appendix D.

4.2.2. Dynamic conditional correlations: SOLGB vs all other indices
Table 5 reports the standard deviations and the average, minimum,

and maximum values of the estimated dynamic conditional correlations
(DCC) between pairs of indices composed of SOLGB, on one side, and
each of the other indices, on the other. The values are presented for the
entire time period and for each sub-period.

In contrast with the behavior of BBGB, the DCC between SOLGB
and BBBOND does not always take positive values. However, as for
BBGB, it reaches a minimum during the bear sub-period, as displayed
in Table 5. It is highest before the pandemic and decreases during the
pandemic, but remains strongly positive. This suggests a very limited
diversification benefit offered by SOLGB to investors in traditional
corporate bonds.

As for the stock market index MSCI, its DCC with SOLGB is always
negative, on average, as shown in Table 5. It reaches its maximum,
closely approaching zero, during the bear sub-period. During the pan-
demic it takes one of its highest average values, but in contrast to BBGB
it remains negative. This evidence indicates that the diversification
benefit offered by SOLGB is potentially higher than that offered by
BBGB.

The DCC between SOLGB and SPGSEN is predominantly in the
negative domain. It is negative during the bear sub-period and moves
towards zero during the bull sub-period, when it takes its highest (but
still negative) value. It is lowest before the pandemic, and remains
substantially negative during the pandemic. This behavior at times
mirrors that of BBGB and, similarly, indicates a substantial diversifi-
cation benefit on the part of SOLGB for investors in the energy sector
6

represented by SPGSEN.
Table 5
DCC summary of SOLGB pairs.

All periods Average Minimum Maximum Std deviation

BBBOND 0.054893 −0.293653 0.498024 0.208038
MSCI −0.135248 −0.400437 0.073147 0.078112
SPGSEN −0.111442 −0.283788 0.076749 0.068029
SP5IAIR −0.073601 −0.284706 0.137399 0.088203
SP5EHCR −0.032574 −0.234578 0.221627 0.079263
SPEUIT −0.113902 −0.363757 0.144061 0.071850

Bear

BBBOND −0.305091 −0.465057 −0.185101 0.065114
MSCI −0.033187 −0.281348 0.186121 0.113504
SPGSEN −0.076103 −0.200063 0.088367 0.068213
SP5IAIR 0.065397 −0.073305 0.227355 0.064815
SP5EHCR 0.093114 −0.054810 0.279569 0.068606
SPEUIT −0.195288 −0.540565 0.055795 0.134199

Bull

BBBOND −0.102658 −0.386768 0.089695 0.105434
MSCI −0.221323 −0.445757 0.066699 0.136182
SPGSEN −0.014148 −0.187108 0.212821 0.101541
SP5IAIR −0.027320 −0.305607 0.151676 0.106862
SP5EHCR −0.019550 −0.197531 0.216876 0.091843
SPEUIT −0.213783 −0.502987 0.095523 0.155727

Pre-pandemic

BBBOND 0.478017 0.417367 0.567178 0.037237
MSCI −0.260982 −0.338715 −0.141952 0.048638
SPGSEN −0.130023 −0.259831 −0.012087 0.045550
SP5IAIR −0.230601 −0.321426 −0.124185 0.050250
SP5EHCR −0.157956 −0.266187 −0.076765 0.041039
SPEUIT −0.155969 −0.256142 −0.021365 0.059628

Pandemic

BBBOND 0.225995 0.069748 0.399815 0.080338
MSCI −0.080376 −0.137088 0.028467 0.042150
SPGSEN −0.092203 −0.205871 0.101736 0.071854
SP5IAIR −0.096729 −0.260967 0.083136 0.080179
SP5EHCR −0.025528 −0.125109 0.107510 0.063964
SPEUIT −0.054864 −0.123986 0.139274 0.059118

Similarly to the relationship with BBGB, the DCC between SP5IAIR
and SOLGB is predominantly in the negative domain. It is lowest,
on average, before the pandemic. It increases during the pandemic
period, but it remains substantially negative, suggesting a substantial
diversification benefit as in the case of BBGB.

As for the healthcare industry, represented by the index SP5EHCR,
its DCC with SOLGB reaches its lowest average value before the pan-
demic. It increases and narrowly approaches zero, only remaining
slightly negative, during the pandemic. This evidence indicates a poten-
tial diversification benefit offered by SOLGB to investors in SP5EHCR,
and, in contrast to BBGB, the benefit persists during the pandemic.

The IT sector is another one for which the diversification potential
of SOLGB during the pandemic differs from that of BBGB. The DCC
between SOLGB and SPEUIT is predominantly in the negative domain
and is strongly negative before the pandemic. It then moves towards
zero, but remains noticeably negative, during the pandemic. The evi-
dence suggests a substantial diversification benefit offered by SOLGB
to investors in SPEUIT, and, in contrast to BBGB, the benefit persists
during the pandemic.

The plots of the dynamic conditional correlations in Table 5 can be
seen in Appendix D.

4.2.3. Expectation-unconditional covariance ellipsoids
The multivariate expectation–covariance ellipsoid of a random vec-

tor 𝑿 is the set of all points such that

𝜕(E{𝑿},C𝑣{𝑿}) =
{

𝒙 ∈ R�̄� ∶ ‖

‖

𝒛𝑿 (𝒙)‖‖
2 ≡

(𝒙 − E{𝑿})′(C𝑣{𝑿})−1(𝒙 − E{𝑿}) = 1
}

,
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Fig. 1. Pandemic sub-period ellipsoids.
where E{𝑿} is the expected value of 𝑿, C𝑣{𝑿} is the variance–
covariance matrix of 𝑿, 𝑛 is the size of the random vector, and ‖

‖

𝒛𝑿 (𝒙)‖‖
2

is the square z-score of vector 𝑿.
The plots of the ellipsoids for each pair of indices (𝑖, 𝑗) are shown

below for the pandemic sub-period. They display the {𝜖𝑖,𝑡}𝑡=𝑇𝑡=0 and the
{𝜖𝑗,𝑡}𝑡=𝑇𝑡=0 with the corresponding ellipsoid overlaid on top. The ellipsoid
is computed based on the unconditional correlation between the two
time series, element 𝑞𝑖𝑗 of the matrix �̄�. Larger correlations lead to
more oblong ellipsoids, while values closer to zero make them more
circular. Additionally, the ellipsoid is tilted towards the right if the
correlation is positive, and tilted towards the left for negative values.

From the previous paragraphs we recall that, during the pandemic,
there is an overall increase in the dynamic conditional correlation
between each green-bond index and all other indices with respect to the
other sub-periods. The same happens for the unconditional correlation
which, in many cases, moves away from the negative domain and
reaches null or positive values. Consequently, the ellipsoids in Fig. 1
take a noticeably more rounded shape than before. However, the airline
7

and the energy sectors, which experienced a strong drop during the
beginning of the pandemic, maintain a negative relationship with the
green-bond market, as during the pre-pandemic sub-period. This is
evidenced by Subfigures (c) and (d), for BBGB, and (i) and (j), for
SOLGB.

The unconditional correlation of SOLGB with MSCI also remains
slightly negative, as can be seen in Subfigure (h), while BBGB’s moves
into the positive domain. This is shown in Subfigure (b) and con-
firmed by the average dynamic conditional correlation values previ-
ously shown in Tables 4 and 5. As for the stand-out sectors of this
time period, healthcare and IT, BBGB changes to a low but positive
unconditional correlation, represented in Subfigures (e) and (f), while
SOLGB maintains a negative – although moderate – one, represented in
Subfigures (k) and (l).

Over the entire window of observation, the diversification benefit
provided by green bonds is smallest for corporate bonds. This result
is in line with the findings of Reboredo (2018), whose analysis only
considers BBGB, with data up to August 2017, and is based on the shape
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and parameters of the bi-variate non-parametric copula densities. As for
the energetic and the airline sectors, SOLGB offers the larger diversifi-
cation benefit of the two green-bond indices, due to the consistently
more negative correlation values. Additionally, and in contrast with
BBGB, SOLGB displays a negative unconditional correlation also with
the world stock index and the healthcare and IT sectors. SOLGB thus
appears to be the superior green-bond option, on average, for investors
in those indices. In fact, SOLGB negatively co-moves with all remaining
sectors of the analysis also in the pre-pandemic sub-period, when BBGB
displays a weak co-movement with the global stock market and with
the healthcare and IT sectors.

The plots of the ellipsoids of the remaining periods, together with a
more detailed breakdown of them, are in Appendix B.

5. Asset allocation analysis

We select six different allocation strategies and build the corre-
sponding portfolios. For each strategy, one portfolio is built from the
entire selection of assets (from hereon referred to as the ‘‘green portfo-
lio’’) and one only considering non-green assets (from hereon referred
to as the ‘‘non-green portfolio’’). The performance of both kinds of
portfolios is then compared along a variety of measures. Our procedure
is first tested with the in-sample approach, in which portfolios are built
only once, in an omniscient way, on the basis of the entire sample data.
Next, the out-of-sample approach is used, in which portfolios are built
every 7 days on the basis of the performance of the assets during the
previous 50 days (DeMiguel et al., 2007). The length of the window is
calculated as the average number of days between negative shocks in
the MSCI index, in the time frame of the sample under consideration.

The remainder of this section is structured as follows: in the first
part the different allocation strategies and performance measures are
explained, then an analysis of the average asset weights in each port-
folio is performed with the in-sample and out-of-sample approaches.
Afterwards, the performance of each of the portfolios is analyzed over
the different sub-periods, for both green and non-green portfolios. Fi-
nally, the portfolios are compared in terms of the spectral risk measure.
The goal of this section is to identify the allocation strategies and the
investor risk preferences which lead to a larger request for investment
in green bonds. Additionally, the two green-bond indices are compared,
by recognizing which strategy assigns a greater weight to which, and
what portfolio performance results from that allocation.

5.1. Allocation strategies

The selected allocation strategies determine the optimal portfolio
composition on the basis of optimization problems centered around
different aspects of asset allocation. Optimization is restricted to non-
negative weights.

5.1.1. Mean–variance strategy
The mean–variance allocation strategy, from Markowitz (1952),

determines the optimal portfolio weights by maximizing the expected
portfolio return and minimizing the portfolio variance. The optimal
portfolio is selected by assuming zero interest rates.

The optimization problem can be expressed in the following way:

max 𝑤′𝜇 −𝑤′𝛴𝑤

s.t 𝑤′1 = 1

𝑤 ≥ 0,

here w is the Nx1 vector of asset weights, 𝛴 is the NxN variance–
ovariance matrix, 𝜇 is the vector of expected asset returns and 𝟏 is

an Nx1 vector of ones. 𝑁 is the number of assets considered in the
8

allocation problem.
5.1.2. Minimum-variance strategy
The minimum-variance allocation strategy determines the optimal

weights with the aim of minimizing portfolio variance. The optimiza-
tion problem can be expressed in the following way:

min 𝑤′𝛴𝑤

s.t 𝑤′1 = 1

𝑤 ≥ 0,

where w is the Nx1 vector of asset weights, 𝛴 is the NxN variance–
covariance matrix, and 𝟏 is an Nx1 vector of ones. 𝑁 is the number of
assets considered in the allocation problem.

5.1.3. Risk-parity strategy
The risk-contribution-parity approach from Maillard et al. (2010)

consists in determining optimal portfolio allocation in such a way that
each asset contributes equally to total portfolio risk. If a portfolio is
considered, with weights given by 𝑤 = (𝑤1, 𝑤2,… , 𝑤𝑁 ) and volatility
given by 𝜎(𝑤) =

√

𝑤′𝛴𝑤, the marginal contribution of the 𝑖th asset to
portfolio risk is defined as:

𝜕𝑤𝑖
𝜎(𝑤) =

𝜕(𝜎(𝑤))
𝜕(𝑤𝑖)

=
𝜕(
√

𝑤′𝛴𝑤)
𝜕(𝑤𝑖)

=
(𝛴𝑤)𝑖

√

𝑤′𝛴𝑤
(6)

and represents the variation in portfolio volatility given an infinitesimal
variation in the weight of one component. If the total risk contribution
of the 𝑖th asset is denoted as 𝜎𝑖(𝑤) = 𝑤𝑖𝜕𝑤𝑖

𝜎(𝑤), then portfolio volatility
can be rewritten as:

𝜎(𝑤) =
𝑁
∑

𝑖=1
𝜎𝑖(𝑤). (7)

Therefore, the risk-parity strategy requires the solution of the following
minimization problem:

min
𝑁
∑

𝑖=1

[

𝑤𝑖 −
𝜎(𝑤)2

(𝛴𝑤)𝑖

]2

s.t 𝑤′1 = 1

𝑤 ≥ 0.

5.1.4. CVaR-optimization strategy
The Conditional-Value-at-Risk (CVaR) optimization strategy deter-

mines the portfolio weights such that the Conditional Value at Risk of
the portfolio is minimized. The CVaR possesses the appealing features
of sub-additivity and convexity. The weights are determined by solving
the following minimization problem:

min 𝐶𝑉 𝑎𝑅𝛼

s.t 𝑤′1 = 1

𝑤 ≥ 0,

here 𝐶𝑉 𝑎𝑅𝛼 is the Conditional Value at Risk of order 𝛼, defined in
ection 5.1.6.

The linear programming solution proposed in Rockafellar and Urya-
ev (2000) is used.

.1.5. Maximum-diversification strategy
The maximum-diversification strategy determines portfolio weights

y maximizing the diversification ratio introduced in Choueifaty and
oignard (2008):

𝑅 = 𝑤′𝜎
√

𝑤′𝛴𝑤
,

where 𝜎 is the vector of asset volatilities, w is the vector of portfolio
weights and 𝛴 is the variance–covariance matrix. The optimization
problem then becomes:

max 𝐷𝑅
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s.t 𝑤′1 = 1

𝑤 ≥ 0.

More specifically, the numerator is a weighted average of asset
olatilities and the denominator is the portfolio volatility. Larger values
f DR are given by lower levels of the latter.

.1.6. Performance indicators
In order to compare the different portfolios, the following perfor-

ance measures are used:

• annualized portfolio log-returns, assuming 252 trading days in a
year;

• annualized volatility, assuming 252 trading days in a year;
• downside risk, which measures risk associated to losses:

𝐷 =
(

𝐸[(𝑋 − 0)21𝑋≤0]
)1∕2 ,

where X are daily log-returns. Larger values of this measure
represent a greater risk;

• maximum drawdown, an indicator of loss risk which measures the
maximum percentage loss with respect to the local maximum in
the observation period of length (0, 𝑇 ):

𝑀𝐷𝐷(𝑇 ) = max
𝜏∈(0,𝑇 )

[

max
𝑡∈(0,𝜏)

𝑥𝑡 − 𝑥𝜏

]

,

where 𝑥𝑡 are the realized log-returns of day t. Larger absolute
values of this measure entail a greater risk.

In order to evaluate portfolio risk in terms of potential losses, the
following measures are used:

• 5% daily Value at Risk, which expresses the maximum daily loss
which will not be exceeded with a 95% probability:

𝑉 𝑎𝑅0.05(𝑋) = 𝐹−1(0.05);

where 𝐹 is the cumulative probability distribution function of
daily log-returns 𝑋. Larger absolute values of this measure entail
a greater risk;

• 5% Conditional Value at Risk which captures the expected daily
loss in case it exceeds the 5% daily Value at Risk:

𝐶𝑉 𝑎𝑅0.05(𝑋) = − 1
0.05 ∫

0.05

0
𝑉 𝑎𝑅𝛾 (𝑋)𝑑𝛾,

where 𝑉 𝑎𝑅0.05(𝑋) is the 5% Value at Risk of daily log-returns 𝑋.
Larger absolute values of this measure entail a greater risk.

Finally, the risk-adjusted performance is evaluated through:

• Sharpe ratio, which measures excess return (over the market
risk-free rate here assumed to be 0) per unit of risk:

𝑆𝑅 = 𝐸[𝑋]
𝜎

,

where 𝑋 are daily log-returns and 𝜎 is their volatility. Larger
values of this measure are preferable;

• Omega ratio, which is defined as the probability-weighted ratio
of returns to losses with respect to a specific benchmark return,
which is set here to zero:

𝛺 =
∫ +∞
0 [1 − 𝐹 (𝑟)]𝑑𝑟

∫ 0
−∞ 𝐹 (𝑟)𝑑𝑟

,

where 𝐹 is the cumulative probability distribution function of
daily log-returns 𝑋. This indicator, in contrast to the Sharpe ratio,
considers all moments of the return distribution. It was introduced
in Keating and Shadwick (2002). A larger ratio is preferable, as it
indicates that the asset provides more gains than losses, relative
to the threshold.
9

5.2. Average asset weights overtime

Table 6 shows the in-sample asset weights of green portfolios for
each asset allocation strategy, except for the equal weight strategy
(where they are constant at 12.5%) over the entire sample period.

It can be noticed that all strategies attribute the highest weights to
at least one of the two green-bond indices and sometimes to both. More
specifically, the maximum-diversification and mean–variance strategies
select the SOLGB index exclusively. Given the high correlation between
the two green-bond indices and the fact that the SOLGB index is less
correlated with the traditional bond market than the BBGB index, this
result can be expected of a strategy seeking to maximize diversification.
Similarly, since mean–variance portfolio optimization is achieved by
a combination of return maximization and variance minimization, we
understand how the higher historical return of SOLGB and the lower
covariance with other assets favor its selection over the other green-
bond index. Both strategies suggest an investment of about half of the
portfolio in green bonds and they favor the green-bond index over the
corporate bond index.

The minimum-variance and the CVaR-optimization strategies assign
the greatest weight to the green-bond indices (an impressive 80.6% and
81.7% of the corresponding portfolios), signaling the high usefulness of
the green market whenever the goal is the minimization of a measure
of risk, be it volatility or CVaR. In both cases, BBGB – with its lower
standard deviation – is favored over SOLGB.

Table 7 shows the average out-of-sample weights of green portfolios,
for each asset allocation strategy and for each sub-period. The equal
weight strategy, where the weights are constant at 12.5%, is again
excluded from the table.

It can be noticed that all strategies attribute the highest weights
to either one of the two green-bond indices or to the corporate bond
index, BBBOND. In fact, the out-of-sample allocation, in contrast to the
in-sample one, is not omniscient, but depends on a moving window of
previous observations. This can give rise to less than optimal allocation
choices for the future.

The mean–variance allocation strategy gives a larger weight to
SOLGB than to BBGB over each sub-period, which is consistent with
the in-sample approach. The higher historical return of SOLGB and the
lower covariance with other assets favor its selection over the other
green-bond index. In periods of general market downturn, meaning
the bear and pandemic periods, the strategy also allocates a relevant
portion of the portfolio to BBGB: about 15%. This can be due to its
consistently lower standard deviation, which renders this index useful
for the purposes of variance optimization. The corporate bond index is
attributed a larger weight than SOLGB in all sub-periods except for the
pre-pandemic one. However, its weight is always smaller than the sum
of the weights given to the green-bond indices. This shows the key role
played by the green-bond market in the mean–variance-optimization
setting.

The minimum-variance allocation strategy is among those that give
the highest weight to the green-bond market, up to about 80% of
the entire portfolio. This is consistent with the in-sample approach.
It gives a larger weight to BBGB than to SOLGB in the bear and bull
sub-periods, when the standard deviation of BBGB is noticeably lower,
and a smaller weight to BBGB in the pre-pandemic and pandemic
sub-periods, when the difference between the two standard deviations
is very small. Over these last two sub-periods, the average standard
deviation of BBGB is still slightly lower than that of SOLGB, however
this is not consistently true across all 50-day calibration windows. This,
together with time-variations in asset covariances, could explain why
the average weight attributed to SOLGB is higher than that attributed to
BBGB. In the last two sub-periods, the corporate bond market increases
in relative importance and reaches 41.7% and 33.5%. However, its
weight is always smaller than the sum of the weights given to the
green-bond indices. The green-bond market has a central role also in

the variance-minimization setting.
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Table 6
In-sample % weights.
Strategy BBGB SOLGB BBBOND MSCI SPGSEN SP5IAIR SP5EHCR SPEUIT

Mean
Variance

0 52.3 37.3 0.6 0 0 4 5.8

Minimum
Variance

60.8 19.8 14.7 3.9 0.4 0 0.4 0

Risk Parity 27.9 29.6 25 4.4 2.7 2.3 4.5 3.6
CVaR Opt. 59.8 21.9 14.1 1.1 0.4 0 2.7 0
Maximum
Divers.

0 47.4 39.3 0 3.4 2.3 4.4 3.2
Table 7
Out-of-sample average % weights.

BBGB SOLGB BBBOND MSCI SPGSEN SP5IAIR SP5EHCR SPEUIT

Mean–Variance

Bear 16.6 22.2 25.5 0.5 7.1 5.9 14.7 7.4
Bull 4.6 21.3 22.1 16.3 6.3 6.4 10.4 12.7
Pre-pandemic 4.2 41.3 26.8 15.9 1.3 0.9 8.7 0.9
Pandemic 14.4 20.9 35.1 3.3 5.9 3.6 12.8 4

Minimum Variance

Bear 72.4 6.1 11.7 3.2 1.5 0.7 0.8 3.6
Bull 61.6 17 4.8 10.5 1.3 1.1 2.9 0.9
Pre-pandemic 16.6 29.5 41.7 6.7 1 2.9 1.3 0.4
Pandemic 15.4 47.6 33.5 0.4 0.7 0.7 1.1 0.5

Risk Parity

Bear 29.2 21.6 29.2 4.8 3.3 2.7 4 5.1
Bull 23.3 27.7 18.6 9.1 4.3 3.7 7.9 5.4
Pre-pandemic 24.3 24.7 29.8 5.7 3.1 4.2 4.9 3.3
Pandemic 27.6 31.1 25.5 3.8 2.7 2 4.4 2.9

CVaR Optimization

Bear 55.4 8.9 19.6 5.1 3 2.1 2.2 3.7
Bull 42.2 19.5 12 12.1 3.5 2.8 4.5 3.6
Pre-pandemic 18.6 25 41.3 8.1 2.1 1.9 2.5 0.6
Pandemic 19.9 37 36.9 0.7 1 1.5 2.1 0.9

Max Diversification

Bear 0 39 44.7 0 4.4 2.8 1.5 7.4
Bull 0 44.4 30.5 0.7 5 4.9 8.4 6.2
Pre-pandemic 0 32.9 49.2 0.8 3.9 6.8 3.8 2.5
Pandemic 0 48.2 39.2 0 3.3 2.3 4.6 2.3
The risk-parity allocation strategy gives comparable weights to
OLGB and BBGB over each sub-period, but slightly higher to the
ormer rather than the latter. This is consistent with the in-sample
pproach. This result tells us that the marginal contribution of SOLGB
o portfolio risk over the calibration windows is lower than that of
BGB and thus a larger proportion of this index is required to achieve
isk parity. The only exception is the bear period, when a greater weight
s given to BBGB. Variance and covariance are the measures of risk
onsidered in this allocation strategy and the bear period is also the
ime in which the difference between the two standard deviations is
argest, with that of BBGB being the lower of the two. This translates
o the choice of a larger investment in BBGB during the sub-period in
rder to obtain risk parity. The corporate bond market is attributed a
eight comparable to that of the two green-bond indices. Its weight is
lways smaller than the greater of the weights given to the green-bond
ndices, except for the pre-pandemic period, when it is slightly larger.
he average standard deviations of the three indices are extremely
imilar during this time, which means that any differences that lead to
he preference of one index over the other manifest in terms of marginal
hanges in time. The weight given to BBBOND is always smaller than
he sum of the weights of the green-bond indices. Again, the green-bond
arket has an important role also in the risk-parity setting.

The CVaR-optimization strategy is among those that give the largest
eight to the green-bond market, about 60% of the entire portfolio.
his is consistent with the in-sample approach. It gives a greater weight
o BBGB than to SOLGB in the bear and bull sub-periods, when the
10

tandard deviation of BBGB is noticeably lower and its average return
is higher, and a larger weight to SOLGB in the pre-pandemic and
pandemic sub-periods, when the difference between the two standard
deviations is very small and SOLGB’s return is higher. These results
are akin to those obtained in the minimum-variance setting. Similarly,
in the last two sub-periods, the corporate bond market increases in
relative importance and reaches 41.3% and 36.9%. However, its weight
is always smaller than the sum of the weights given to the green-bond
indices.

The portfolios built with the maximum-diversification approach
attribute zero average weight to the BBGB index and a weight of
about 40% to SOLGB across all time periods. This is consistent with
results obtained with the in-sample approach. The diversification index
being maximized is dependent on the asset variance and covariance
matrix. Given the high correlation between the two green-bond indices
and the fact that SOLGB is less correlated with the other assets than
BBGB, this result can be expected of a strategy seeking to maximize
diversification. The diversification potential associated with BBGB is
absorbed by SOLGB and by the other assets. Additionally, the ‘‘cor-
porate’’ diversification potential offered by BBGB is likely absorbed
by BBBOND since – as can be recalled – the two indices refer to
overlapping debt markets. This asset allocation strategy also attributes
a great weight to the traditional corporate bond market, comparable
to that of SOLGB across all sub-periods. This is a key indication that
the diversification benefit provided by the green-bond market and the
traditional corporate-bond market is different, meaning that neither can

be taken as a substitute for the other.
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5.3. Portfolio performance

This section tackles the analysis of portfolio performance across
time periods. When analyzing the behavior of average weights within
green portfolios, the change in the relative importance of green assets
during each sub-period and for each strategy has already been stressed.
Comparing the performance and the risk of green and non-green port-
folios will give more insight into those considerations.

Tables 8, 9, 10, and 11 report the value of the performance mea-
sures for the bear, bull, pre-pandemic and pandemic sub-periods, re-
spectively. Within each table, the measures are computed for each
allocation strategy, for in-sample and out-of-sample portfolios and for
both green and non-green portfolios. The findings relative to the in-
sample approach are reported for the sake of completeness, although it
is not a realistic approach, as it is omniscient. In the written analysis,
the focus is on the out-of-sample approach and, in particular, on the
difference between the performance of green portfolios and of non-
green portfolios. Emphasis is placed on which kind performs best for
each allocation strategy, and along which measures, within each time
period.

5.3.1. Bear sub-period
During the bear sub-period, a time of market downturn, green

portfolios always prove less risky than non-green ones, along all mea-
sures of risk and loss: annualized volatility, maximum drawdown,
downside risk, VaR and CVaR. As for the performance, Table 8 shows
that green portfolios built with strategies focusing on risk reduction
but disregarding return optimization lead to lower losses than non-
green portfolios, with the exception of the 5% CVaR optimization
strategy and the minimum-variance strategy. The 5% CVaR-optimized
non-green portfolio has a positive annualized return while the green
portfolio has a negative one, although their difference is small. As
for the minimum-variance portfolios, they are able to achieve positive
annualized returns and Sharpe ratios – the highest of any strategy – but
the non-green-portfolio values are substantially larger.

The equal-weight strategy gives insight into whether a naive allo-
cation strategy would benefit from the inclusion of the two green-bond
indices in the portfolio. Both the green and the non-green portfolios
perform very negatively, but, similarly to the portfolios based on pure
risk-reduction strategies, the green performs less badly than the latter.
The simple inclusion of the green-bond indices in the portfolio is useful
in reducing the average loss, but it is not enough in order to achieve a
satisfactory (positive) performance.

The mean–variance allocation strategy, the only one which not only
minimizes risk but aims at the maximization of returns per unit of risk,
shows the green portfolio to be preferable to non-green one not only
over all measures of risk, but also of performance. Both kinds have a
negative annualized return, but losses are less than half for the green
portfolio. Similar results are given by the risk-adjusted performance
measures: the Sharpe ratio is less strongly negative, meaning that a
smaller loss per unit of risk is incurred, and the Omega ratio is higher,
indicating that the cumulative return distribution of the green portfolio
is larger than that of the non-green portfolio in the area of gains.

5.3.2. Bull sub-period
During the bull sub-period, when stock market growth is high,

Table 9 shows that all considered strategies report the same result:
the non-green portfolios perform better in terms of returns, but green-
portfolio returns are still quite high. The green indices confirm their
risk-reduction benefit by rendering the corresponding portfolios sub-
stantially less risky than the non-green ones along all measures of risk,
all the while being able to capture some market growth, although to a
lower degree than the non-green ones.

The 5% CVaR optimization strategy is of particular note, as the
corresponding green portfolio has a high annualized return, despite
allocating an average weight of more than 60% to the green indices,
11

as can be seen in Table 7.
5.3.3. Pre-pandemic sub-period
The pre-pandemic sub-period, which is characterized by the most

relevant presence of green bonds, sees superior performance of the
green portfolios over the non-green ones for almost all allocation
strategies and in terms of all measures: greater annualized returns,
better risk-adjusted return measures, and lower risk.

This is an interesting result: the pre-pandemic sub-period is char-
acterized by general stock market growth, as is the bull sub-period.
However, in the former, a consistently better performance of the green
portfolios is seen for all strategies, while in the latter a better per-
formance of the green portfolios is seen only in terms of risk, but
not in terms of returns. However, an explanation can be found for
this by noticing that the average performance of the green indices
is substantially better before the pandemic than during the bull sub-
period. Still, in both time windows, the risk-reduction benefit of green
bonds is always substantial.

The risk-parity strategy is the only one to yield a slightly better per-
formance for the non-green portfolio during the pre-pandemic period,
at least in terms of annualized returns. The difference can be seen in
Table 10. It is very small, however, and the risk-adjusted performance
measures (Sharpe and Omega ratios) clearly favor the green portfolio.
This portfolio is also preferable in terms of risk measures. The inclusion
of green assets before the pandemic allows the investor to achieve
comparably high returns without facing as much risk.

5.3.4. Pandemic sub-period
During the pandemic, again considering the out-of-sample approach,

the risk-reduction benefit provided by the inclusion of green indices in
the portfolios is also consistent across all strategies, while the difference
between the returns of green portfolios and non-green ones depends on
the strategy.

Strategies which focus on risk-reduction and disregard the optimiza-
tion of returns (risk parity, minimum variance, CVaR optimization, and
maximum diversification) are able to produce green portfolios which
are less risky than the non-green ones. However, the corresponding
green portfolios perform worse than the non-green ones in terms of
returns. Nevertheless, as can be seen in Table 11, in the case of the risk-
parity and maximum-diversification strategies, all portfolios achieve
positive returns. It is therefore very interesting to note that, in those
cases, the inclusion of the green indices in the portfolios is able to not
only stabilize their behavior during the pandemic, a time of market
turmoil, but also to provide an overall positive return.

On the other hand, the mean–variance strategy, the only one opti-
mizing not only in terms of risk but also in terms of returns, produces
a green portfolio which is preferable to the non-green one in terms
of both lower risk and higher returns. The annualized return and the
Sharpe ratio of the green portfolio are positive, while the non-green
portfolio has markedly negative ones.

Finally, the equal-weight strategy leads to the highest average re-
turns out of any other strategy. This is due to the fact that the selection
of stock indices in this study includes some of the best-performing
indices during the pandemic, which receive a largely superior weight
through this strategy than through any other. The annualized volatility
of both portfolios reaches the highest values obtained in this study.

5.4. The spectral risk measure

5.4.1. Definition
We undertake one final evaluation of the performance of the differ-

ent portfolios by using the Spectral Risk Measure (SRM). The SRM is a
distortion risk measure, as introduced in Denneberg (1994) and Wang
et al. (1997). A distortion risk measure is the expected loss under a
transformation of the underlying cumulative probability distribution by
means of a distortion function. It is linked to an agent’s risk aversion,
as it takes a weighted average of the distribution quantiles in which

the weights depend on a risk-aversion parameter. In the present paper,
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Table 8
Portfolio performance — Bear sub-period.
Performance measures Green Portfolios Non-green Portfolios

In-sample Out-of-sample In-sample Out-of-sample

Mean–Variance

Annualized return (%) 2.643 −3.561 2.602 −8.525
Annualized volatility (%) 2.889 10.727 4.933 13.761
Sharpe ratio 0.917 −0.284 0.545 −0.578
Downside risk (%) 2.147 8.635 3.361 10.920
Omega ratio 1.172 0.939 1.095 0.894
Maximum Drawdown (%) −2.472 −9.891 −4.381 −14.190
VaR 5% (%) −0.276 −1.023 −0.450 −1.402
CVaR 5% (%) −0.443 −1.839 −0.659 −2.373

Minimum Variance

Annualized return (%) 2.809 1.281 4.713 4.825
Annualized volatility (%) 2.728 2.684 4.875 4.645
Sharpe ratio 1.029 0.488 0.969 1.038
Downside risk (%) 2.074 2.033 3.373 3.044
Omega ratio 1.198 1.087 1.185 1.197
Maximum Drawdown (%) −1.946 −2.809 −2.816 −3.160
VaR 5% (%) −0.273 −0.292 −0.468 −0.461
CVaR 5% (%) −0.459 −0.422 −0.714 −0.612

Equal Weight

Annualized return (%) −7.224 −7.224 −10.600 −10.600
Annualized volatility (%) 10.778 10.778 14.544 14.544
Sharpe ratio −0.642 −0.642 −0.698 −0.698
Downside risk (%) 8.038 8.038 10.869 10.869
Omega ratio 0.899 0.899 0.890 0.890
Maximum Drawdown (%) −15.247 −15.247 −20.427 −20.427
VaR 5% (%) −1.192 −1.192 −1.638 −1.638
CVaR 5% (%) −1.581 −1.581 −2.136 −2.136

Risk Parity

Annualized return (%) 0.890 −0.638 −0.753 −2.478
Annualized volatility (%) 3.190 3.376 5.973 6.380
Sharpe ratio 0.294 −0.173 −0.097 −0.362
Downside risk (%) 2.333 2.576 4.188 4.631
Omega ratio 1.049 0.973 0.985 0.943
Maximum Drawdown (%) −3.293 −4.715 −7.987 −9.560
VaR 5% (%) −0.297 −0.381 −0.596 −0.646
CVaR 5% (%) −0.472 −0.497 −0.745 −0.871

CVaR Optimization

Annualized return (%) 2.892 −1.213 4.792 0.540
Annualized volatility (%) 2.823 3.613 4.858 5.459
Sharpe ratio 1.024 −0.320 0.988 0.126
Downside risk (%) 2.149 2.690 3.369 3.725
Omega ratio 1.197 0.947 1.189 1.021
Maximum Drawdown (%) −1.997 −5.716 −2.760 −6.093
VaR 5% (%) −0.272 −0.395 −0.465 −0.588
CVaR 5% (%) −0.475 −0.554 −0.717 −0.719

Maximum Diversification

Annualized return (%) 1.448 −0.885 1.005 −1.920
Annualized volatility (%) 3.148 3.464 5.188 6.348
Sharpe ratio 0.472 −0.239 0.219 −0.274
Downside risk (%) 2.317 2.588 3.576 4.644
Omega ratio 1.080 0.961 1.036 0.955
Maximum Drawdown (%) −3.152 −5.624 −6.493 −9.243
VaR 5% (%) −0.314 −0.360 −0.508 −0.604
CVaR 5% (%) −0.459 −0.503 −0.648 −0.902
the Exponential Risk Measure (ERM) is used, a particular kind of SRM
which implies constant absolute risk aversion. It has already been used
in a number of optimization problems in finance, among which optimal
futures hedge ratio determination, as in Barbi and Romagnoli (2016).
We employ their same notation and define the ERM as:

𝐸𝑅𝑀 = −∫

1

0

𝑘𝑒−𝑘𝑠

1 − 𝑒−𝑘
𝑞𝑋 (𝑠)𝑑𝑠,

where 𝑘 > 0 is the Arrow–Pratt absolute risk-aversion coefficient, X is
the distribution of portfolio log-returns and 𝑞𝑋 (𝑠) denotes the s-quantile
of X.

The spectral risk measure is computed in each period for all port-
folio allocation strategies and for different values of the risk-aversion
12
parameter 𝑘. Only risk-averse investors are considered and thus only
positive values of 𝑘, which are larger for higher levels of risk aversion.
We do not consider the case of risk-loving investors, due to the low-risk
nature of green bonds as an asset class. We aim to check whether risk-
averse investors, those most interested in fixed-income instruments,
display a preference towards portfolios which include green bonds and,
in general, under which allocation strategy.

The empirical quantile is considered and discretized over intervals
of length 1/1000. Lower values of the risk measure are preferable,
as they indicate a lower perceived risk on the part of the investor.
Figures relative to the in-sample portfolios and tables relative to the
in-sample and out-of-sample ERM values are included in Appendix E.
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Table 9
Portfolio performance — Bull sub-period.
Performance measures Green Portfolios Non-green Portfolios

In-sample Out-of-sample In-sample Out-of-sample

Mean–Variance

Annualized return (%) 3.932 13.613 13.162 19.754
Annualized volatility (%) 2.398 5.553 4.447 6.532
Sharpe ratio 1.620 2.327 2.803 2.793
Downside risk (%) 1.682 3.491 2.849 3.883
Omega ratio 1.318 1.513 1.599 1.601
Maximum Drawdown (%) −1.692 −2.103 −1.767 −2.348
VaR 5% (%) −0.272 −0.512 −0.407 −0.543
CVaR 5% (%) −0.366 −0.733 −0.580 −0.776

Minimum Variance

Annualized return (%) 1.862 4.289 8.038 12.848
Annualized volatility (%) 2.277 2.179 4.417 3.815
Sharpe ratio 0.822 1.939 1.773 3.188
Downside risk (%) 1.620 1.482 2.981 2.380
Omega ratio 1.147 1.381 1.355 1.705
Maximum Drawdown (%) −1.581 −1.436 −2.498 −1.444
VaR 5% (%) −0.264 −0.217 −0.402 −0.335
CVaR 5% (%) −0.337 −0.308 −0.606 −0.479

Equal Weight

Annualized return (%) 15.507 15.507 21.600 21.600
Annualized volatility (%) 5.003 5.003 6.706 6.706
Sharpe ratio 2.907 2.907 2.951 2.951
Downside risk (%) 3.076 3.076 4.107 4.107
Omega ratio 1.603 1.603 1.613 1.613
Maximum Drawdown (%) −2.693 −2.693 −3.284 −3.284
VaR 5% (%) −0.481 −0.481 −0.657 −0.657
CVaR 5% (%) −0.630 −0.630 −0.837 −0.837

Risk Parity

Annualized return (%) 5.097 7.622 13.329 16.229
Annualized volatility (%) 2.267 2.628 3.968 4.584
Sharpe ratio 2.204 2.808 3.174 3.305
Downside risk (%) 1.528 1.666 2.429 2.760
Omega ratio 1.449 1.595 1.686 1.707
Maximum Drawdown (%) −1.487 −1.372 −1.725 −1.943
VaR 5% (%) −0.239 −0.270 −0.346 −0.415
CVaR 5% (%) −0.322 −0.353 −0.499 −0.568

CVaR Optimization

Annualized return (%) 1.605 8.948 8.138 14.752
Annualized volatility (%) 2.281 2.871 4.393 4.448
Sharpe ratio 0.710 3.000 1.803 3.116
Downside risk (%) 1.633 1.768 2.962 2.694
Omega ratio 1.126 1.657 1.363 1.688
Maximum Drawdown (%) −1.581 −1.755 −2.498 −1.881
VaR 5% (%) −0.256 −0.240 −0.403 −0.422
CVaR 5% (%) −0.336 −0.369 −0.602 −0.566

Maximum Diversification

Annualized return (%) 4.168 5.967 10.566 12.773
Annualized volatility (%) 2.346 2.852 4.002 4.763
Sharpe ratio 1.752 2.047 2.530 2.548
Downside risk (%) 1.592 1.865 2.559 2.988
Omega ratio 1.345 1.399 1.528 1.514
Maximum Drawdown (%) −1.737 −1.659 −2.052 −2.450
VaR 5% (%) −0.256 −0.291 −0.353 −0.481
CVaR 5% (%) −0.330 −0.375 −0.529 −0.600
In this section, the focus is on the out-of-sample values, which reflect
a more realistic (non-omniscient) portfolio construction.

5.4.2. Results
When the Arrow–Pratt risk-aversion coefficient is equal to 10, the

lowest value in this analysis, the hypothetical investor is moderately
risk averse.

In Fig. 2 it can be seen that, in this setting, green portfolios have
overall lower ERM values than non-green ones. The relative position
of portfolios built with different strategies is very similar for green
and non-green portfolios. In both cases, the minimum-variance, the
maximum-diversification and the CVaR-optimization strategies mini-
13

mize the ERM. Their values are almost overlapping. The risk parity
portfolio scores very similarly to them except for the non-green portfo-
lio during the pandemic, when its ERM raises noticeably. From a careful
look at the data in Table 11, insight into this issue can be gained.
The pandemic is the sub-period during which the risk-parity strategy
yields its largest value in terms of 5% VaR. This indicates a quantile
distribution taking on values that are large in magnitude in the left
tail, thus increasing 𝑞𝑟(𝑠), while the weight 𝑘𝑒−𝑘𝑠

1−𝑒−𝑘 is the same for every
strategy.

The mean–variance and the equal-weight strategies are the ones
with the highest ERM. This means that their return distributions, when
balanced by a weight relating risk-aversion to each percentile 𝑠, are
considered more risky. The equal-weight strategy is the riskiest during
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Table 10
Portfolio performance - Pre-pandemic sub-period.
Performance measures Green Portfolios Non-green Portfolios

In-sample Out-of-sample In-sample Out-of-sample

Mean–Variance

Annualized return (%) 9.827 11.522 10.178 11.119
Annualized volatility (%) 2.661 3.622 4.057 3.841
Sharpe ratio 3.537 3.030 2.410 2.765
Downside risk (%) 1.615 2.130 2.542 2.228
Omega ratio 1.825 1.691 1.506 1.616
Maximum Drawdown (%) −1.393 −1.902 −2.105 −1.889
VaR 5% (%) −0.246 −0.298 −0.393 −0.320
CVaR 5% (%) −0.342 −0.444 −0.524 −0.457

Minimum Variance

Annualized return (%) 8.552 7.825 8.149 6.491
Annualized volatility (%) 2.736 2.620 2.993 2.919
Sharpe ratio 3.014 2.889 2.632 2.170
Downside risk (%) 1.734 1.611 1.790 1.753
Omega ratio 1.643 1.620 1.557 1.447
Maximum Drawdown (%) −2.296 −1.360 −1.454 −1.521
VaR 5% (%) −0.256 −0.249 −0.254 −0.263
CVaR 5% (%) −0.358 −0.331 −0.365 −0.348

Equal Weight

Annualized return (%) 5.682 5.682 4.423 4.423
Annualized volatility (%) 8.749 8.749 11.899 11.899
Sharpe ratio 0.675 0.675 0.423 0.423
Downside risk (%) 6.438 6.438 8.837 8.837
Omega ratio 1.129 1.129 1.079 1.079
Maximum Drawdown (%) −9.826 −9.826 −13.700 −13.700
VaR 5% (%) −0.952 −0.952 −1.329 −1.329
CVaR 5% (%) −1.456 −1.456 −2.002 −2.002

Risk Parity

Annualized return (%) 8.416 7.087 7.687 7.211
Annualized volatility (%) 2.789 2.987 4.704 3.965
Sharpe ratio 2.912 2.308 1.598 1.776
Downside risk (%) 1.741 1.976 3.135 2.620
Omega ratio 1.628 1.480 1.324 1.360
Maximum Drawdown (%) −1.833 −2.040 −4.476 −2.913
VaR 5% (%) −0.257 −0.310 −0.464 −0.378
CVaR 5% (%) −0.367 −0.423 −0.656 −0.550

CVaR Optimization

Annualized return (%) 8.479 7.003 8.268 6.546
Annualized volatility (%) 2.788 2.800 2.984 2.898
Sharpe ratio 2.934 2.432 2.678 2.203
Downside risk (%) 1.788 1.766 1.776 1.798
Omega ratio 1.620 1.508 1.571 1.459
Maximum Drawdown (%) −2.384 −1.673 −1.397 −1.546
VaR 5% (%) −0.254 −0.268 −0.259 −0.277
CVaR 5% (%) −0.366 −0.357 −0.364 −0.361

Maximum Diversification

Annualized return (%) 8.289 6.125 6.631 5.867
Annualized volatility (%) 2.645 2.993 3.624 3.436
Sharpe ratio 3.024 2.002 1.790 1.676
Downside risk (%) 1.603 1.944 2.259 2.201
Omega ratio 1.663 1.396 1.358 1.328
Maximum Drawdown (%) −1.319 −2.220 −3.158 −2.539
VaR 5% (%) −0.266 −0.311 −0.297 −0.326
CVaR 5% (%) −0.334 −0.393 −0.447 −0.443
W
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the pandemic, for both green and non-green portfolios. It is in fact the
strategy with by far the most extreme value in terms of 5% VaR. As
for the mean–variance strategy, it reaches its highest ERM score during
the bear sub-period, for both green and non-green portfolios. The 5%
VaR in Table 8 confirms our findings, as it is maximum for this strategy
during the bear period, for both green and non-green portfolios.

Barbi and Romagnoli (2016) provide insight into the change in
weight linked to a change in the risk-aversion parameter. Larger values
of 𝑘 assign a greater weight to the left tail of the distribution of returns,
and a progressively smaller weight to non-tail quantiles. For 𝑘 = 10,
hey find that approximately 63% of the total weighting mass lies in the
eft 10% tail of the probability distribution, while the weighting mass
14

ncreases to 99% for 𝑘 = 50, the case of an extremely risk-averse agent. w
hen increasing 𝑘, it can thus be expected for the ERM to increase,
ecause of the concentration of weights towards the most extreme
uantiles. Additionally, the differences between strategies should be
xacerbated by highlighting their most extreme tail behavior, thus
enalizing even further the two outliers in terms of tail risk: the equal-
eight and the mean–variance strategies. These considerations are
erified by Figs. 3, 4, and 5, which represent out-of-sample ERMs for
= 20, 𝑘 = 30, and 𝑘 = 50, respectively.

Section 5.3 has shown green portfolios to be consistently less risky
han their non-green counterparts, ceteris paribus. This section goes
urther, showing that portfolios which include green bonds are system-
tically preferable for a risk-averse investor also under a risk measure

hich is tailored to behavioral preferences.
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Table 11
Portfolio performance — Pandemic sub-period.
Performance measures Green Portfolios Non-green Portfolios

In-sample Out-of-sample In-sample Out-of-sample

Mean–Variance

Annualized return (%) 2.612 1.334 9.014 −3.021
Annualized volatility (%) 4.735 7.846 8.416 11.053
Sharpe ratio 0.568 0.208 1.068 −0.221
Downside risk (%) 3.741 5.948 6.298 9.413
Omega ratio 1.120 1.042 1.230 0.952
Maximum Drawdown (%) −8.462 −8.312 −11.742 −13.448
VaR 5% (%) −0.413 −0.876 −0.811 −0.973
CVaR 5% (%) −0.748 −1.338 −1.292 −1.967

Minimum Variance

Annualized return (%) 0.419 −0.910 4.291 0.819
Annualized volatility (%) 4.039 4.093 5.294 5.664
Sharpe ratio 0.124 −0.203 0.820 0.172
Downside risk (%) 3.291 3.372 4.069 4.693
Omega ratio 1.025 0.961 1.179 1.037
Maximum Drawdown (%) −7.503 −7.733 −9.127 −10.700
VaR 5% (%) −0.333 −0.338 −0.442 −0.465
CVaR 5% (%) −0.658 −0.702 −0.831 −0.932

Equal Weight

Annualized return (%) 13.600 13.600 18.091 18.091
Annualized volatility (%) 20.649 20.649 27.354 27.354
Sharpe ratio 0.722 0.722 0.747 0.747
Downside risk (%) 16.328 16.328 21.440 21.440
Omega ratio 1.165 1.165 1.170 1.170
Maximum Drawdown (%) −25.786 −25.786 −31.852 −31.852
VaR 5% (%) −1.619 −1.619 −2.239 −2.239
CVaR 5% (%) −3.668 −3.668 −4.860 −4.860

Risk Parity

Annualized return (%) 3.842 2.885 10.367 10.059
Annualized volatility (%) 6.414 5.844 11.732 9.735
Sharpe ratio 0.620 0.516 0.900 1.034
Downside risk (%) 5.279 4.821 9.284 7.634
Omega ratio 1.141 1.113 1.208 1.233
Maximum Drawdown (%) −11.066 −10.253 −16.785 −13.203
VaR 5% (%) −0.484 −0.482 −0.875 −0.889
CVaR 5% (%) −1.100 −0.990 −2.028 −1.656

CVaR Optimization

Annualized return (%) 0.104 −0.474 4.402 1.823
Annualized volatility (%) 3.971 4.584 5.352 5.748
Sharpe ratio 0.046 −0.081 0.832 0.343
Downside risk (%) 3.203 3.790 4.080 4.558
Omega ratio 1.009 0.984 1.182 1.072
Maximum Drawdown (%) −7.223 −8.030 −9.150 −10.063
VaR 5% (%) −0.307 −0.427 −0.435 −0.503
CVaR 5% (%) −0.639 −0.798 −0.832 −0.956

Maximum Diversification

Annualized return (%) 3.024 1.756 7.336 5.360
Annualized volatility (%) 5.798 6.347 9.386 7.726
Sharpe ratio 0.543 0.306 0.802 0.715
Downside risk (%) 4.795 5.243 7.510 6.278
Omega ratio 1.122 1.069 1.185 1.158
Maximum Drawdown (%) −10.375 −10.980 −14.134 −12.282
VaR 5% (%) −0.449 −0.517 −0.688 −0.648
CVaR 5% (%) −0.994 −1.075 −1.646 −1.352
6. Conclusions

The purpose of this paper was to analyze the market co-movements
and diversification benefits of green bonds and the corresponding impli-
cations on portfolio allocation, when considering a number of relevant
market indices and with a focus on the Covid-19 pandemic. With this
goal, we identified for which assets green bonds provided the largest
diversification benefits, and during which sub-period. Additionally, we
highlighted the allocation strategies and the investor risk preferences
which lead to a larger request for the inclusion of green bonds in
portfolios. During the analysis, differences between the two green-bond
indices, and the diversification benefits provided by each one, emerged.
15
Concerning the co-movement, our results indicate that the two
green-bond indices considered, the Bloomberg Barclays MSCI Green
Bond Index and the Solactive Green Bond Index, show a significantly
positive dynamic conditional correlation with the traditional corporate
bond market in all sub-periods. They thus do not appear to be par-
ticularly helpful for diversification in this sector, but their even lower
volatility makes them an appealing new asset class for conservative
investors.

The Solactive Green Bond Index negatively co-moves with all re-
maining sectors of the analysis: the global stock market, the energy
commodity index, the airline industry, the healthcare sector, and the
IT index, when considering the entire time window and when analyz-

ing the pre-pandemic and the pandemic sub-periods separately. The
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Fig. 2. Out-of-sample Exponential Risk Measures, 𝑘 = 10.

Fig. 3. Out-of-sample Exponential Risk Measures, 𝑘 = 20.

Fig. 4. Out-of-sample Exponential Risk Measures, 𝑘 = 30.

Bloomberg Barclays MSCI Green Bond Index, on the other hand, dis-
plays a weak co-movement with the global stock market and with the
healthcare and IT sectors, especially before and during the pandemic.
Therefore, the Solactive Green Bond Index seems to be the better green
option for investors in these industries, in terms of diversification po-
tential. Interestingly, the Bloomberg Barclays MSCI Green Bond Index
16
Fig. 5. Out-of-sample Exponential Risk Measures, 𝑘 = 50.

is slightly preferable to Solactive in terms of volatility and displays a
weak positive co-movement with the sectors which had an outstanding
positive performance during the pandemic.

We then considered a variety of portfolio allocation strategies and
of risk and performance measures, with the aim of assessing the impact
of the inclusion of the green-bond indices in otherwise traditional
portfolios. The difference between the two green indices, in terms of
diversification potential and volatility, was confirmed by the weights
attributed by the various allocation strategies. More weight was at-
tributed to the Bloomberg Barclays MSCI Green Bond Index by strate-
gies which prioritized variance reduction, while the Solactive Green
Bond Index was selected exclusively when the aim was diversification
maximization. This suggests that the diversification potential associated
with the other green-bond index was absorbed by Solactive and by the
non-green assets.

Green portfolios always proved preferable to non-green portfolios in
terms of risk, in all periods and for all strategies. They also displayed
lower losses in the bear period, a time of market downturn, for almost
all considered strategies, while they had positive but lower returns
during the bull sub-period, a time of market growth. The difference in
the returns of green portfolios and non-green portfolios was emphasized
by strategies which prioritized risk reduction over return optimization
and thus attributed larger weights to the least risky assets: the two
green bond indices. The inclusion of green bonds in the pre-pandemic
period allowed the corresponding portfolios to achieve returns higher
than or comparable to the non-green ones, and without facing as
much risk. During the pandemic, the strategies which placed all focus
on portfolio variance, thus neglecting to consider returns, lead to a
substantially better performance of non-green portfolios in terms of
increases in value. On the contrary, the mean–variance optimization
strategy, which maximizes returns per unit of risk, lead to largely
superior returns for the green portfolios. When adding to the analysis a
further risk measure, in order to account for behavioral components
by incorporating investor risk aversion, green portfolios were again
shown to be consistently preferable, ceteris paribus, to their non-
green counterparts. The risk-reduction and the diversification benefits
provided by the inclusion of green indices was consistent across all
strategies and for all periods, including the extreme scenario of the
Covid-19 pandemic.

Acknowledgment

Funding: co-funded by the European Union - Next Generation EU -
Project GRINS - PE0000018, PNRR Mission 4, C2 Intervention 1.3, CUP
H73C22000930001.



Energy Economics 120 (2023) 106587M. Martiradonna et al.
Appendix A-E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eneco.2023.106587.

References

Arif, M., Naeem, M.A., Farid, S., Nepal, R., Jamasb, T., 2022. Diversifier or more?
Hedge and safe haven properties of green bonds during COVID-19. Energy Policy
168, http://dx.doi.org/10.1016/j.enpol.2022.113102.

Barbi, M., Romagnoli, S., 2016. Optimal hedge ratio under a subjective re-weighting of
the original measure. Appl. Econ. 48, 1271–1280. http://dx.doi.org/10.2139/ssrn.
1992412.

Bloomberg Barclays Indices, 2021. Bloomberg barclays MSCI global green bond in-
dex. URL: https://www.msci.com/documents/10199/242721/Barclays_MSCI_Green_
Bond_Index.pdf/.

Choueifaty, Y., Coignard, Y., 2008. Toward maximum diversification. J. Portf. Manag.
35, 40–51. http://dx.doi.org/10.3905/JPM.2008.35.1.40.

DeMiguel, V., Garlappi, L., Uppal, R., 2007. Optimal versus naive diversification: How
inefficient is the 1/N portfolio strategy? Rev. Financ. Stud. 22 (5), 1915–1953.
http://dx.doi.org/10.1093/rfs/hhm075.

Denneberg, D., 1994. Non-Additive Measure and Integral. In: Springer Science &
Business Media, Springer Dordrecht, http://dx.doi.org/10.1007/978-94-017-2434-
0.

Elsayed, A., Naifar, N., Nasreen, S., Tiwari, A., 2022. Dependence structure and dynamic
connectedness between green bonds and financial markets: Fresh insights from
time-frequency analysis before and during COVID-19 pandemic. Energy Econ. 107,
105842. http://dx.doi.org/10.1016/j.eneco.2022.105842.

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica 50 (4), 987–1007. http://dx.
doi.org/10.2307/1912773.

Engle, R.F., 2002. Dynamic conditional correlation. J. Bus. Econom. Statist. 20 (3),
339–350. http://dx.doi.org/10.1198/073500102288618487.

European Commission, 2021. European green bond standard. URL: https:
//ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-
finance/european-green-bond-standard_en.

European Commission Press Release, 2021. NextGenerationEU: European Commission
successfully issues first green bond to finance the sustainable recovery. URL:
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_5207.

Flammer, C., 2021. Corporate green bonds. J. Financ. Econ. 142 (2), 499–516. http:
//dx.doi.org/10.2139/ssrn.3125518.

Han, Y., Li, P., 2020. Do green bonds add value in multi-asset portfolios: Evidence
from China. Available At SSRN http://dx.doi.org/10.2139/ssrn.3639753.
17
Jones, L., 2021. Record $269.5bn green issuance for 2020: Late surge sees pandemic
year pip 2019 total by $3bn. URL: https://www.climatebonds.net/2021/01/record-
2695bn-green-issuance-2020-late-surge-sees-pandemic-year-pip-2019-total-3bn.

Jones, L., 2022. Sustainable debt tops $1 trillion in record breaking 2021, with
green growth at 75%: New report. URL: https://www.climatebonds.net/2022/
04/sustainable-debt-tops-1-trillion-record-breaking-2021-green-growth-75-new-
report.

Keating, C., Shadwick, W.F., 2002. A universal performance measure. J. Perform. Meas.
6, 59–84.

Li, W.K., Mak, T.K., 1994. On the squared residual autorcorrelations in non-linear time
series with conditional heteroskedasticity. J. Time Series Anal. 15 (6), 627–636.
http://dx.doi.org/10.1111/j.1467-9892.1994.tb00217.x.

Maillard, S., Roncalli, T., Teiletche, J., 2010. The properties of equally weighted risk
contribution portfolios. J. Portfolio Manage. 36, 60–70. http://dx.doi.org/10.3905/
jpm.2010.36.4.060.

Markowitz, H., 1952. Portfolio selection. J. Finance 7 (1), 77–91. http://dx.doi.org/10.
2307/2975974.

Meucci, A., 2011. A short, comprehensive, practical guide to copulas. In: GARP Risk
Professional. pp. 22–27.

Naeem, M.A., Farid, S., Ferrer, R., Hussain Shahzad, S.J., 2021. Comparative efficiency
of green and conventional bonds pre- and during COVID-19: An asymmetric
multifractal detrended fluctuation analysis. Energy Policy 153, 112285. http://dx.
doi.org/10.1016/j.enpol.2021.112285.

Reboredo, J.C., 2018. Green bond and financial markets: Co-movement, diversification
and price spillover effects. Energy Econ. 74 (C), 38–50. http://dx.doi.org/10.1016/
j.eneco.2018.05.030.

Reboredo, J.C., Ugolini, A., 2020. Price connectedness between green bond and finan-
cial markets. Econ. Model. 88 (C), 25–38. http://dx.doi.org/10.1016/j.econmod.
2019.09.004.

Rockafellar, R.T., Uryasev, S.P., 2000. Optimization of conditional Value-at-Risk. J. Risk
2, 21–42. http://dx.doi.org/10.21314/JOR.2000.038.

Solactive, A.G., 2021. Shining Green: Bonds to tackle climate change. URL:
https://www.solactive.com/wp-content/uploads/2021/09/Solactive-Green-Bonds-
September-2021.pdf.

Solactive, A.G., 2022. Guideline relating to Solactive Green Bond Index. URL:
https://www.solactive.com/wp-content/uploads/2022/02/Guideline_Solactive-
Green-Bonds-Index_Update_20220207-1.pdf.

Tang, D.Y., Zhang, Y., 2020. Do shareholders benefit from green bonds? J. Corp.
Finance 61 (C), http://dx.doi.org/10.1016/j.jcorpfin.2018.12.001.

The GBP Databases and Indices Working Group, 2017. Summary of Green Fixed
Income Indices Providers. International Capital Markets Association, URL:
https://www.icmagroup.org/assets/documents/Regulatory/Green-Bonds/Green-
Bond-Indices-Summary-Document-190617.pdf.

Wang, S.S., Young, V.R., Panjer, H.H., 1997. Axiomatic characterization of insurance
prices. Insurance Math. Econom. 21 (2), 173–183. http://dx.doi.org/10.1016/
S0167-6687(97)00031-0.

https://doi.org/10.1016/j.eneco.2023.106587
http://dx.doi.org/10.1016/j.enpol.2022.113102
http://dx.doi.org/10.2139/ssrn.1992412
http://dx.doi.org/10.2139/ssrn.1992412
http://dx.doi.org/10.2139/ssrn.1992412
https://www.msci.com/documents/10199/242721/Barclays_MSCI_Green_Bond_Index.pdf/
https://www.msci.com/documents/10199/242721/Barclays_MSCI_Green_Bond_Index.pdf/
https://www.msci.com/documents/10199/242721/Barclays_MSCI_Green_Bond_Index.pdf/
http://dx.doi.org/10.3905/JPM.2008.35.1.40
http://dx.doi.org/10.1093/rfs/hhm075
http://dx.doi.org/10.1007/978-94-017-2434-0
http://dx.doi.org/10.1007/978-94-017-2434-0
http://dx.doi.org/10.1007/978-94-017-2434-0
http://dx.doi.org/10.1016/j.eneco.2022.105842
http://dx.doi.org/10.2307/1912773
http://dx.doi.org/10.2307/1912773
http://dx.doi.org/10.2307/1912773
http://dx.doi.org/10.1198/073500102288618487
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-finance/european-green-bond-standard_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-finance/european-green-bond-standard_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-finance/european-green-bond-standard_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-finance/european-green-bond-standard_en
https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-finance/european-green-bond-standard_en
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_5207
http://dx.doi.org/10.2139/ssrn.3125518
http://dx.doi.org/10.2139/ssrn.3125518
http://dx.doi.org/10.2139/ssrn.3125518
http://dx.doi.org/10.2139/ssrn.3639753
https://www.climatebonds.net/2021/01/record-2695bn-green-issuance-2020-late-surge-sees-pandemic-year-pip-2019-total-3bn
https://www.climatebonds.net/2021/01/record-2695bn-green-issuance-2020-late-surge-sees-pandemic-year-pip-2019-total-3bn
https://www.climatebonds.net/2021/01/record-2695bn-green-issuance-2020-late-surge-sees-pandemic-year-pip-2019-total-3bn
https://www.climatebonds.net/2022/04/sustainable-debt-tops-1-trillion-record-breaking-2021-green-growth-75-new-report
https://www.climatebonds.net/2022/04/sustainable-debt-tops-1-trillion-record-breaking-2021-green-growth-75-new-report
https://www.climatebonds.net/2022/04/sustainable-debt-tops-1-trillion-record-breaking-2021-green-growth-75-new-report
https://www.climatebonds.net/2022/04/sustainable-debt-tops-1-trillion-record-breaking-2021-green-growth-75-new-report
https://www.climatebonds.net/2022/04/sustainable-debt-tops-1-trillion-record-breaking-2021-green-growth-75-new-report
http://refhub.elsevier.com/S0140-9883(23)00085-3/sb16
http://refhub.elsevier.com/S0140-9883(23)00085-3/sb16
http://refhub.elsevier.com/S0140-9883(23)00085-3/sb16
http://dx.doi.org/10.1111/j.1467-9892.1994.tb00217.x
http://dx.doi.org/10.3905/jpm.2010.36.4.060
http://dx.doi.org/10.3905/jpm.2010.36.4.060
http://dx.doi.org/10.3905/jpm.2010.36.4.060
http://dx.doi.org/10.2307/2975974
http://dx.doi.org/10.2307/2975974
http://dx.doi.org/10.2307/2975974
http://refhub.elsevier.com/S0140-9883(23)00085-3/sb20
http://refhub.elsevier.com/S0140-9883(23)00085-3/sb20
http://refhub.elsevier.com/S0140-9883(23)00085-3/sb20
http://dx.doi.org/10.1016/j.enpol.2021.112285
http://dx.doi.org/10.1016/j.enpol.2021.112285
http://dx.doi.org/10.1016/j.enpol.2021.112285
http://dx.doi.org/10.1016/j.eneco.2018.05.030
http://dx.doi.org/10.1016/j.eneco.2018.05.030
http://dx.doi.org/10.1016/j.eneco.2018.05.030
http://dx.doi.org/10.1016/j.econmod.2019.09.004
http://dx.doi.org/10.1016/j.econmod.2019.09.004
http://dx.doi.org/10.1016/j.econmod.2019.09.004
http://dx.doi.org/10.21314/JOR.2000.038
https://www.solactive.com/wp-content/uploads/2021/09/Solactive-Green-Bonds-September-2021.pdf
https://www.solactive.com/wp-content/uploads/2021/09/Solactive-Green-Bonds-September-2021.pdf
https://www.solactive.com/wp-content/uploads/2021/09/Solactive-Green-Bonds-September-2021.pdf
https://www.solactive.com/wp-content/uploads/2022/02/Guideline_Solactive-Green-Bonds-Index_Update_20220207-1.pdf
https://www.solactive.com/wp-content/uploads/2022/02/Guideline_Solactive-Green-Bonds-Index_Update_20220207-1.pdf
https://www.solactive.com/wp-content/uploads/2022/02/Guideline_Solactive-Green-Bonds-Index_Update_20220207-1.pdf
http://dx.doi.org/10.1016/j.jcorpfin.2018.12.001
https://www.icmagroup.org/assets/documents/Regulatory/Green-Bonds/Green-Bond-Indices-Summary-Document-190617.pdf
https://www.icmagroup.org/assets/documents/Regulatory/Green-Bonds/Green-Bond-Indices-Summary-Document-190617.pdf
https://www.icmagroup.org/assets/documents/Regulatory/Green-Bonds/Green-Bond-Indices-Summary-Document-190617.pdf
http://dx.doi.org/10.1016/S0167-6687(97)00031-0
http://dx.doi.org/10.1016/S0167-6687(97)00031-0
http://dx.doi.org/10.1016/S0167-6687(97)00031-0

	The beneficial role of green bonds as a new strategic asset class: Dynamic dependencies, allocation and diversification before and during the pandemic era
	Introduction
	Literature review
	Preliminary analysis
	Sample description
	Return analysis
	Full sample 2014–2021
	Sub-periods


	Analysis of market relationships
	The model
	DCC GARCH model

	Results
	Dynamic conditional correlations: BBGB vs all other indices
	Dynamic conditional correlations: SOLGB vs all other indices
	Expectation-unconditional covariance ellipsoids


	Asset allocation analysis
	Allocation strategies
	Mean–variance strategy
	Minimum-variance strategy
	Risk-parity strategy
	CVaR-optimization strategy
	Maximum-diversification Strategy
	Performance indicators

	Average asset weights overtime
	Portfolio performance
	Bear sub-period
	Bull sub-period
	Pre-pandemic sub-period
	Pandemic sub-period

	The Spectral Risk Measure
	Definition
	Results


	Conclusions
	Acknowledgment
	Appendix A-E. Supplementary data
	References


