39 research outputs found

    Can Forel–Ule Index Act as a Proxy of Water Quality in Temperate Waters? Application of Plume Mapping in Liverpool Bay, UK

    Get PDF
    The use of ocean colour classification algorithms, linked to water quality gradients, can be a useful tool for mapping river plumes in both tropical and temperate systems. This approach has been applied in operational water quality programs in the Great Barrier Reef to map river plumes and assess trends in marine water composition and ecosystem health during flood periods. In this study, we used the Forel–Ule colour classification algorithm for Sentinel-3 OLCI imagery in an automated process to map monthly, annual and long-term plume movement in the temperate coastal system of Liverpool Bay (UK). We compared monthly river plume extent to the river flow and in situ water quality data between 2017–2020. The results showed a strong positive correlation (Spearman’s rho = 0.68) between the river plume extent and the river flow and a strong link between the FUI defined waterbodies and nutrients, SPM, turbidity and salinity, hence the potential of the Forel–Ule index to act as a proxy for water quality in the temperate Liverpool Bay water. The paper discusses how the Forel–Ule index could be used in operational water quality programs to better understand river plumes and the land-based inputs to the coastal zones in UK waters, drawing parallels with methods that have been developed in the GBR and Citclops project. Overall, this paper provides the first insight into the systematic long-term river plume mapping in UK coastal waters using a fast, cost-effective, and reproducible workflow. The study created a novel water assessment typology based on the common physical, chemical and biological ocean colour properties captured in the Forel–Ule index, which could replace the more traditional eutrophication assessment regions centred around strict geographic and political boundaries. Additionally, the Forel–Ule assessment typology is particularly important since it identifies areas of the greatest impact from the land-based loads into the marine environment, and thus potential risks to vulnerable ecosystems

    Citizen science and expert judgement: A cost-efficient combination to monitor and assess the invasiveness of non-indigenous fish escapees

    Get PDF
    Mapping the distribution and evaluating the impacts of marine non-indigenous species (NIS) are two fundamental tasks for management purposes, yet they are often time consuming and expensive. This case study focuses on the NIS gilthead seabream Sparus aurata escaped from offshore farms in Madeira Island in order to test an innovative, cost-efficient combined approach to risk assessment and georeferenced dispersal data collection. Species invasiveness was screened using the Aquatic Species Invasiveness Screening Kit (AS-ISK), and revealed a high invasion risk. Occurrences of S. aurata were assessed involving citizens in GIS participatory mapping and data from recreational fishing contests. A probability map showed that S. aurata is well dispersed around Madeira Island. This assessment proved to be a cost-efficient early warning method for detecting NIS dispersal, highlighting the urgent need for additional surveys that should search for sexually mature individuals and assess the direct and indirect impacts in the native ecosystemFundação para a Ciência e Tecnologia - FCTinfo:eu-repo/semantics/publishedVersio

    Recreational sea fishing in Europe in a global contextParticipation rates, fishing effort, expenditure, and implications for monitoring and assessment

    Get PDF
    Marine recreational fishing (MRF) is a high-participation activity with large economic value and social benefits globally, and it impacts on some fish stocks. Although reporting MRF catches is a European Union legislative requirement, estimates are only available for some countries. Here, data on numbers of fishers, participation rates, days fished, expenditures, and catches of two widely targeted species were synthesized to provide European estimates of MRF and placed in the global context. Uncertainty assessment was not possible due to incomplete knowledge of error distributions; instead, a semi-quantitative bias assessment was made. There were an estimated 8.7 million European recreational sea fishers corresponding to a participation rate of 1.6%. An estimated 77.6 million days were fished, and expenditure was Euro5.9 billion annually. There were higher participation, numbers of fishers, days fished and expenditure in the Atlantic than the Mediterranean, but the Mediterranean estimates were generally less robust. Comparisons with other regions showed that European MRF participation rates and expenditure were in the mid-range, with higher participation in Oceania and the United States, higher expenditure in the United States, and lower participation and expenditure in South America and Africa. For both northern European sea bass (Dicentrarchus labrax, Moronidae) and western Baltic cod (Gadus morhua, Gadidae) stocks, MRF represented 27% of the total removals. This study highlights the importance of MRF and the need for bespoke, regular and statistically sound data collection to underpin European fisheries management. Solutions are proposed for future MRF data collection in Europe and other regions to support sustainable fisheries management.Institut Francais de Recherche pour l'Exploitation de la Mer; French Ministry of Fisheries Management; Greek National Data Collection Programme; European Commission, Data Collection Framework; Department for Environment, Food and Rural Affairs [MF1221, MF1230, MI001]; Norges Forskningsrad [267808]; State Department of Agriculture, Food Security and Fisheries Mecklenburg-Western Pomerania; Interreg IVa 2 Seas; Dutch Ministry of Economic Affairs; European Fishery Fund; Government of Galicia [ED481B2014/034-0

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link
    corecore