253 research outputs found

    The development of palladium-catalysts for organic synthesis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2007.Vita.Includes bibliographical references.Chapter 1. Suzuki-Miyaura coupling reactions of aryl and heteroaryl halides with aryl-, heteroaryl and vinyl boronic acids proceed in very good to excellent yield with the use of 2-(2',6'-dimethoxybiphenyl)-dicyclohexylphosphine, SPhos. Additionally, a comparison of the reactions with SPhos and with 2- (2',4',6'-triisoprc'pylbiphenyl)-diphenylphosphine is presented that is informative in determining the relative importance of ligand bulk and electron-donating ability in the high activity of catalysts derived from ligands of this type. Further, when the aryl bromide becomes too hindered, an interesting C-H bond functionalization-cross-coupling sequence intervenes to provide product in high yield. Chapter 2. The direct transformation of aryl bromides into the corresponding Weinreb amides via Pd-catalyzed aminocarbonylation at atmospheric pressure is described. Electron-deficient, -neutral and -rich aryl bromides were all efficiently transformed to product. Furthermore, the process tolerates a wide variety of functional groups, is mild, and is operationally simple. Chapter 3. A general, functional group tolerant, and mild system for the Pd-catalyzed Heck carbonylation of aryl chlorides into the corresponding benzamides has been developed.(cont.) This catalyst operates at one atmosphere of carbon monoxide using an inexpensive, air-stable and commercially available ligand. A variety of aryl chlorides were all successfully transformed to the corresponding amides using primary, a-branched primary, cyclic secondary, acyclic secondary, or aryl amines. Additionally, the mechanism of this reaction was studied using in situ IR spectroscopy and revealed the unique effect of sodium phenoxide in this reaction. Chapter 4. Pressurized microreactor systems greatly expand the range of reaction conditions and accelerate gas-liquid mass transfer. Heck aminocarbonylation reactions exemplify the potential for quickly and safely scanning of reagents and reaction conditions (1 to 15 bar and 100 - 160'C). The results reveal a general trend of increased yield of amide with temperature and selectivity for a-ketoamide production at lower temperature: and higher pressure.by Joseph R. Martinelli.Ph.D

    The History of Flow Chemistry at Eli Lilly and Company

    Get PDF
    Flow chemistry was initially used for speed to early phase material delivery in the development laboratories, scaling up chemical transformations that we would not or could not scale up batch for safety reasons. Some early examples included a Newman Kwart Rearrangement, Claisen rearrangement, hydroformylation, and thermal imidazole cyclization. Next, flow chemistry was used to enable safe scale up of hazardous chemistries to manufacturing plants. Examples included high pressure hydrogenation, aerobic oxidation, and Grignard formation reactions. More recently, flow chemistry was used in Small Volume Continuous (SVC) processes, where highly potent oncolytic molecules were produced by fully continuous processes at about 10 kg/day including reaction, extraction, distillation, and crystallization, using disposable equipment contained in fume hoods

    A calculation of the BBB_{B} parameter in the static limit

    Full text link
    We calculate the BBB_{B} parameter, relevant for B0\overline{B}^0 -- B0B^0 mixing, from a lattice gauge theory simulation at β=6.0\beta = 6.0. The bottom quarks are simulated in the static theory, the light quarks with Wilson fermions. Improved smearing functions produced by a variational technique, MOST, are used to reduce statistical errors and minimize excited-state contamination of the ground-state signal. We obtain BB(4.33GeV)=0.984+4B_B(4.33 GeV) = 0.98^{+4}_{-4} (statistical) 18+3^{+3}_{-18} (systematic) which corresponds to B^B=1.406+6\widehat{B}_B = 1.40^{+6}_{-6} (statistical) 26+4^{+4}_{-26} (systematic) for the one-loop renormalization-scheme-independent parameter. The systematic errors include the uncertainty due to alternative (less favored) treatments of the perturbatively-calculated mixing coefficients; this uncertainty is at least as large as residual differences between Wilson-static and clover-static results. Our result agrees with extrapolations of results from relativistic (Wilson) heavy quark simulations.Comment: 39 pages (REVTeX) including 10 figures (PostScript); Final version accepted for publication: Added new section for clarity; Included comparison to recent results by other groups; slight numerical changes; Essential conclusions remain the sam

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Preface Special Issue on novel superconducting and magnetic materials

    Get PDF
    Superconductivity and magnetism -- and their entanglement in a single material -- are among the most studied phenomena in condensed matter physics and continue to pose new challenges for fundamental research and exciting opportunities for technological applications. The last decade has witnessed ground-breaking discoveries in both fields: high-temperature superconductivity in compressed hydrides, unconventional superconductivity in iron-based materials and new types of magnetic states in spin-orbit coupled materials with topological and nematic characteristics. The prediction of material-specific properties and the interpretation of superconducting and magnetic phase transitions have been crucially aided by advances in ab-initio electronic structure methods within the density functional theory and its extensions. This special issue gathers together selected theoretical and experimental contributions on novel aspects of superconductivity and magnetism, %that have been collected in memory of Prof. Sandro Massidda. The collection aims to provide an updated view on timing issues and challenges in this active research field that have been at the hearth of Sandro's scientific interests. As commemorated in the obituary by Continenza and Colombo, Sandro has dedicated his scientific work to the development and application of \textit{ab-initio} computational and theoretical methods, yet never losing focus to the ultimate goal of theoretical and computational physics, that is to support, complement and understand the experimental observations

    Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

    Get PDF
    Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production

    Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy

    Get PDF
    Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients’ primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
    corecore