Abstract

We calculate the BBB_{B} parameter, relevant for B0\overline{B}^0 -- B0B^0 mixing, from a lattice gauge theory simulation at β=6.0\beta = 6.0. The bottom quarks are simulated in the static theory, the light quarks with Wilson fermions. Improved smearing functions produced by a variational technique, MOST, are used to reduce statistical errors and minimize excited-state contamination of the ground-state signal. We obtain BB(4.33GeV)=0.984+4B_B(4.33 GeV) = 0.98^{+4}_{-4} (statistical) 18+3^{+3}_{-18} (systematic) which corresponds to B^B=1.406+6\widehat{B}_B = 1.40^{+6}_{-6} (statistical) 26+4^{+4}_{-26} (systematic) for the one-loop renormalization-scheme-independent parameter. The systematic errors include the uncertainty due to alternative (less favored) treatments of the perturbatively-calculated mixing coefficients; this uncertainty is at least as large as residual differences between Wilson-static and clover-static results. Our result agrees with extrapolations of results from relativistic (Wilson) heavy quark simulations.Comment: 39 pages (REVTeX) including 10 figures (PostScript); Final version accepted for publication: Added new section for clarity; Included comparison to recent results by other groups; slight numerical changes; Essential conclusions remain the sam

    Similar works

    Full text

    thumbnail-image

    Available Versions