26 research outputs found

    Determinants of legacy effects in pine trees - implications from an irrigation-stop experiment

    Get PDF
    Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.Peer reviewe

    Economic consequences of investing in anti-HCV antiviral treatment from the Italian NHS perspective : a real-world-based analysis of PITER data

    Get PDF
    OBJECTIVE: We estimated the cost consequence of Italian National Health System (NHS) investment in direct-acting antiviral (DAA) therapy according to hepatitis C virus (HCV) treatment access policies in Italy. METHODS: A multistate, 20-year time horizon Markov model of HCV liver disease progression was developed. Fibrosis stage, age and genotype distributions were derived from the Italian Platform for the Study of Viral Hepatitis Therapies (PITER) cohort. The treatment efficacy, disease progression probabilities and direct costs in each health state were obtained from the literature. The break-even point in time (BPT) was defined as the period of time required for the cumulative costs saved to recover the Italian NHS investment in DAA treatment. Three different PITER enrolment periods, which covered the full DAA access evolution in Italy, were considered. RESULTS: The disease stages of 2657 patients who consecutively underwent DAA therapy from January 2015 to December 2017 at 30 PITER clinical centres were standardized for 1000 patients. The investment in DAAs was considered to equal €25 million, €15 million, and €9 million in 2015, 2016, and 2017, respectively. For patients treated in 2015, the BPT was not achieved, because of the disease severity of the treated patients and high DAA prices. For 2016 and 2017, the estimated BPTs were 6.6 and 6.2 years, respectively. The total cost savings after 20 years were €50.13 and €55.50 million for 1000 patients treated in 2016 and 2017, respectively. CONCLUSIONS: This study may be a useful tool for public decision makers to understand how HCV clinical and epidemiological profiles influence the economic burden of HCV

    The role of far-red light in plant photosynthesis and photoprotection under artificial solar irradiance

    No full text

    Tracheid and pit anatomy vary in tandem in a tall Sequoiadendron giganteum tree

    No full text
    Across land plants there is a general pattern of xylem conduit diameters widening towards the stem base thus reducing the accumulation of hydraulic resistance as plants grow taller. In conifers, xylem conduits consist of cells with closed end-walls and water must flow through bordered pits imbedded in the side walls. As a consequence both cell size, which determines the numbers of walls that the conductive stream of water must cross, as well as the characteristics of the pits themselves, crucially affect total hydraulic resistance. Because both conduit size and pit features influence hydraulic resistance in tandem, we hypothesized that features of both should vary predictably with one another. To test this prediction we sampled a single tall (94.8 m) Sequoiadendron giganteum tree (giant sequoia), collecting wood samples from the most recent annual ring progressively downwards from the tree top to the base. We measured tracheid diameter and length, number of pits per tracheid, and the areas of pit apertures, tori, and margos. Tracheid diameter widened from treetop to base following a power law with an exponent (tracheid diameterstem length slope) of approximately 0.20. A similar scaling exponent was found between tracheid length and distance from tree top. Additionally, pit aperture, torus, and margo areas all increased (again with a power of 3c0.20) with distance from tree top, paralleling the observed variation in tracheid diameter and length. Pit density scaled isometrically with tracheid length. Within individual tracheids, total permeable area of pits, measured as the sum of the margo areas, scaled isometrically with lumen area. Given that pores of the margo membrane are believed to increase in parallel with membrane area, from a strictly anatomical perspective, our results support the interpretation that pit resistance remains a relatively constant fraction of total resistance along the hydraulic pathway. \ua9 2016 International Association of Wood Anatomists

    Does phloem osmolality affect diurnal diameter changes of twigs but not of stems in Scots pine?

    No full text
    Diel stem diameter changes measured at the stem base of temperate tree species can be mostly explained by a hydraulic system of flow and storage compartments passively driven by transpiration. Active, osmotic processes are considered to play a minor role only. Here we explore whether such osmotic processes have a stronger impact on diel changes in twig diameter than in stem diameter because twigs are closer to the leaves, the main source of newly acquired carbon. We investigated stem and twig diameter changes of wood and bark of pine trees in parallel to fluctuations of the osmolality in needles and in the bark at the stem base. We found consistent twig bark size increments concurrent with twig wood size decreases during daylight hours whereas needle osmolality was not consistently increasing even on sunny days. The size changes of bark and wood either reversed or ran in parallel from late afternoon onwards until the next morning. No such patterns were measurable at the stem base. Stem wood was hardly changing in size, whereas stem bark followed the regular pattern of a decrease during the daylight hours and an increase during the night. Osmolality at the stem base showed no particular course over 24 h. We conclude that assimilates from the needles were rapidly transported to the twigs where they increased the osmolality of the bark tissue by sugar loading, explaining the bark size increase (over-) compensating the xylem size decrease. The stem base largely followed the expectation of a passive, hydraulic system without a measurable role of osmoregulation. Diameter changes thus follow different diurnal dynamics in twigs and at the stem base
    corecore