6,842 research outputs found

    Operationalising a Threshold Concept in Economics: A Pilot Study Using Multiple Choice Questions on Opportunity Cost

    Get PDF
    This paper addresses the emerging educational framework that envisions threshold concepts as mediators of learning outcomes. While the threshold concepts framework is highly appealing on a theoretical level, few researchers have attempted to measure threshold concept acquisition empirically. Achieving this would open a new arena for exploration and debate in the threshold concepts field, and provide potential results to inform teaching practice. We begin the process of operationalising threshold concepts in economics by attempting to measure students' grasp of the threshold concept of opportunity cost in an introductory economics class. We suggest two potential measures and correlate them with an array of ex ante and ex post variables, including students' expectations of success, prior misconceptions about economics and the work of economists, and actual success in the course. Results cast new light onto the factors that influence the acquisition of threshold concepts, the relationship between threshold concept acquisition and final learning outcomes, and the empirical viability of threshold concepts generally.

    Heat transport in insulators from ab initio Green-Kubo theory

    Full text link
    The Green-Kubo theory of thermal transport has long be considered incompatible with modern simulation methods based on electronic-structure theory, because it is based on such concepts as energy density and current, which are ill-defined at the quantum-mechanical level. Besides, experience with classical simulations indicates that the estimate of heat-transport coefficients requires analysing molecular trajectories that are more than one order of magnitude longer than deemed feasible using ab initio molecular dynamics. In this paper we report on recent theoretical advances that are allowing one to overcome these two obstacles. First, a general gauge invariance principle has been established, stating that thermal conductivity is insensitive to many details of the microscopic expression for the energy density and current from which it is derived, thus permitting to establish a rigorous expression for the energy flux from Density-Functional Theory, from which the conductivity can be computed in practice. Second, a novel data analysis method based on the statistical theory of time series has been proposed, which allows one to considerably reduce the simulation time required to achieve a target accuracy on the computed conductivity. These concepts are illustrated in detail, starting from a pedagogical introduction to the Green-Kubo theory of linear response and transport, and demonstrated with a few applications done with both classical and quantum-mechanical simulation methods.Comment: 36 pages, 14 figure

    New Approaches To Photometric Redshift Prediction Via Gaussian Process Regression In The Sloan Digital Sky Survey

    Full text link
    Expanding upon the work of Way and Srivastava 2006 we demonstrate how the use of training sets of comparable size continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and other least-squares fitting methods. This is possible via new large size matrix inversion techniques developed for Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with a neural-network kernel function appears to give superior results for this problem. Our best fit results for the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u,g,r,i,z filters gives an rms error of 0.0201 while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our GPR rank-reduction methods. We find that morphological information included with many photometric surveys appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This would indicate that most morphological information simply adds noise from the GP point of view in the data used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions.Comment: 32 pages, ApJ in Press, 2 new figures, 1 new table of comparison methods, updated discussion, references and typos to reflect version in Pres

    A congruent phylogenomic signal places eukaryotes within the Archaea

    Get PDF
    Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook ‘three domains’ tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation

    Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    Get PDF
    Background: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. Results: We used a phylogenomic approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers, dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment for bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. Conclusions: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism are conserved among lineages, the genes making up those pathways can have very different origins in different eukaryotes. Thus, from the perspective of the effects of lateral gene transfer on individual gene ancestries in different lineages, eukaryotic metabolism appears to be chimeric

    Physical properties of interstellar filaments

    Full text link
    We analyze the physical parameters of interstellar filaments that we describe by an idealized model of isothermal self-gravitating infinite cylinder in pressure equilibrium with the ambient medium. Their gravitational state is characterized by the ratio f_cyl of their mass line density to the maximum possible value for a cylinder in a vacuum. Equilibrium solutions exist only for f_cyl < 1. This ratio is used in providing analytical expressions for the central density, the radius, the profile of the column density, the column density through the cloud centre, and the fwhm. The dependence of the physical properties on external pressure and temperature is discussed and directly compared to the case of pressure-confined isothermal self-gravitating spheres. Comparison with recent observations of the fwhm and the central column density N_H(0) show good agreement and suggest a filament temperature of ~10 K and an external pressure p_ext/k in the range 1.5x10^4 K/cm^3 to 5x10^4 K/cm^3. Stability considerations indicate that interstellar filaments become increasingly gravitationally unstable with mass line ratio f_cyl approaching unity. For intermediate f_cyl>0.5 the instabilities should promote core formation through compression, with a separation of about five times the fwhm. We discuss the nature of filaments with high mass line densities and their relevance to gravitational fragmentation and star formation.Comment: 18 pages, 12 figures accepted for publication (13/4/2012

    Evidence of Detrimental Effects of Environmental Contaminants on Growth and Reproductive Physiology of White Sturgeon in Impounded Areas of the Columbia River

    Get PDF
    This study sought to determine whether wild white sturgeon from the Columbia River (Oregon) were exhibiting signs of reproductive endocrine disruption. Fish were sampled in the free-flowing portion of the river (where the population is experiencing reproductive success) and from three reservoirs behind hydroelectric dams (where fish have reduced reproductive success). All of the 18 pesticides and almost all of the 28 polychlorinated biphenyls (PCBs) that were analyzed in livers and gonads were detected in at least some of the tissue samples. Metabolites of p,p′-dichlorodiphenyltrichloroethane (DDT) [p,p′-dichlorodiphenyldichloroethylene (DDE) and p,p′-1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD)] were consistently found at relatively high levels in fish. Some males and immature females showed elevated plasma vitellogenin; however, concentrations were not correlated with any of the pesticides or PCBs analyzed. Negative correlations were found between a number of physiologic parameters and tissue burdens of toxicants. Plasma triglycerides and condition factor were negatively correlated with total DDT (DDD + DDE + DDT), total pesticides (all pesticides detected – total DDT), and PCBs. In males, plasma androgens and gonad size were negatively correlated with total DDT, total pesticides, and PCBs. Fish residing in the reservoir behind the oldest dam had the highest contaminant loads and incidence of gonadal abnormalities, and the lowest triglycerides, condition factor, gonad size, and plasma androgens. These data suggest that endocrine-disrupting chemicals may be accumulating behind dams over time. Overall, results of this study indicate that exposure to environmental contaminants may be affecting both growth and reproductive physiology of sturgeon in some areas of the Columbia River

    A chiral topological add-drop filter for integrated quantum photonic circuits

    Full text link
    The integration of quantum emitters within topological nano-photonic devices opens up new avenues for the control of light-matter interactions at the single photon level. Here, we realise a spin-dependent, chiral light-matter interface using individual semiconductor quantum dots embedded in a topological add-drop filter. The filter is imprinted within a valley-Hall photonic crystal (PhC) membrane and comprises a resonator evanescently coupled to a pair of access waveguides. We show that the longitudinal modes of the resonator enable the filter to perform wavelength-selective routing of light, protected by the underlying topology. Furthermore, we demonstrate that for a quantum dot located at a chiral point in the resonator, selective coupling occurs between well-defined spin states and specific output ports of the topological device. This behaviour is fundamental to the operation of chiral devices such as a quantum optical circulator. Our device therefore represents a topologically-protected building block with potential to play an enabling role in the development of chiral integrated quantum photonic circuits

    The description of F2 at small x incorporating angular ordering

    Get PDF
    We study the perturbative QCD description of the HERA measurements of F2(x,Q2)F_2 (x, Q^2) using a gluon distribution that is obtained from an evolution incorporating angular ordering of the gluon emissions, and which embodies both GLAP and BFKL dynamics. We compare the predictions with recent HERA data for F2F_2. We present estimates of the charm component F2c(x,Q2)F_2^c (x, Q^2) and of FL(x,Q2)F_L (x, Q^2).Comment: 8 LaTeX pages + 4 uuencoded figure
    corecore