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Determining the relationships among the major groups of cellular life is important for understanding the

evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook

‘three domains’ tree based on informational genes, eukaryotes and Archaea share a common ancestor to

the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes

within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for

these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal

biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of

uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is

weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses,

whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered

a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thau-

marchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support

for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby

vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.

Keywords: phylogenetics; eukaryotes; evolution; tree of life
1. INTRODUCTION
The early evolution of eukaryotes remains a fascinating and

poorly understood period in the history of life. Eukaryotic

cell structure is remote from that of Archaea and Bacteria,

with features such as the nucleus, endomembrane system

and associated organelles that have no obvious prokaryotic

homologues [1]. As a result, hypotheses on eukaryotic

origins have been motivated by comparisons of the small

number of homologous gene sequences, particularly

those of ribosomal RNA (rRNA) and protein-coding

genes involved in nucleic acid replication, transcription

and translation—the so-called ‘informational genes’ or

‘functional core of genomes’—that are conserved between

eukaryotes, Archaea and Bacteria [2–9]. The rooted

three-domains tree of life [2,9], in which the eukaryotic

nuclear lineage is the sister group to a monophyletic

Archaea comprising two major groups, the Euryarchaeota

and Crenarchaeota, is probably the dominant paradigm

for eukaryotic origins and it appears in many textbooks.

However, other published phylogenies have suggested

that eukaryotes emerged from within an already diversified

archaeal radiation as the sister group to one of the several

extant archaeal lineages [5,6,8,10,11]. The best known of

these hypotheses is probably the eocyte hypothesis

[5,6,10,12], which places eukaryotes as the sister group

of the Crenarchaeota, a group also known as the eocytes.
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Taxon sampling is one of the most important determi-

nants of accurate phylogenetic estimation [13,14], and

past attempts to resolve the origin of eukaryotes have

been hindered by the relatively poor sampling of Archaea

by genome sequencing. However, the discovery that

uncultured Archaea play major roles in global nutrient

cycles [15] has led to a number of sequence-based

environmental surveys, which have improved sampling

of Archaeal lineages. Recently discovered groups include

the Thaumarchaeota [16], Aigarchaeota [17] and

Korarchaeota [18]. Phylogenetic analyses suggest that

all of these groups are more closely related to the

Crenarchaeota than to the Euryarchaeota. Accordingly

the name ‘TACK superphylum’ was recently proposed

[19] to contain the Thaumarchaeota, Aigarchaeota,

Crenarchaeota and Korarchaeota.

Although a consensus is emerging on the monophyly

of the TACK superphylum [5,19,20], the relationships

among its constituent lineages, and the relationship of

the group as a whole to eukaryotes, remain unclear.

Robust phylogenetic support for an origin for eukaryotes

within, or as a sister group to, a characterized archaeal

clade would be extremely exciting, because features

shared between eukaryotes and extant archaeal members

could inform a reconstruction of the ancestral eukaryote

and provide insights into the early stages of eukaryotic

evolution. The first author to draw a link between eukar-

yotes and any member of the TACK superphylum was

Lake [7,10], whose eocyte hypothesis proposed a sister-

group relationship between eukaryotes and the few

Crenarchaeotes, or eocytes, which were known at that
This journal is q 2012 The Royal Society
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time; this relationship was also recovered by Cox et al. [6].

More recent phylogenetic analyses with extended taxo-

nomic samplings have united eukaryotes with a clade

comprising the Crenarchaeota plus Thaumarchaeota

[5], with the Thaumarchaeota alone [21], or as part of

an unresolved eukaryotes plus TACK supergroup [19].

All of these topologies are consistent with an eocyte

hypothesis broadened in scope to include the newly

discovered lineages. By contrast, a supertree analysis of

single-copy protein families found in Bacteria, Archaea

including Crenarchaeota, and eukaryotes, was interpreted

to reject the eocyte hypothesis in favour of alternative

hypotheses whereby eukaryotes emerge from within the

Euryarchaeota [22,23]. Yet another analysis [24] has

suggested that archaeal genes in eukaryotes derive from

an ancient, probably extinct and in any case unknown,

archaeal lineage.

As well as sparse taxon sampling, phylogenetic ana-

lyses attempting to infer ancient relationships face

difficulties in the identification of reliable and infor-

mative phylogenetic markers. In addition to rRNA,

empirical and simulation studies suggest that slow-

evolving protein sequences conserved between Bacteria,

Archaea and eukaryotes should also contain useful phylo-

genetic information [5]. However, individual proteins

often resolve ancient divergences only weakly, leading to

the practice of concatenating multiple alignments to

increase statistical power. Since phylogenetic methods

assume that these concatenated alignments evolve under

a single topology, any horizontal gene transfers affecting

the genes in the concatenation could lead to systematic

phylogenetic error [25]. Horizontal transfer is now recog-

nized as a frequent and important process in the evolution

of all life forms [26], and failure to explicitly deal with its

effects in inter-domain datasets could lead to a significant

error in the inference of the relationship between Archaea

and eukaryotes. At the same time, current phylogenetic

methods will not necessarily recover correct or consistent

relationships, even when all of the genes being analysed

evolved on the same tree [27]. This is because lack of

fit between the sequence data and the evolutionary

model used can lead to systematic topological error.

The use of appropriate evolutionary models is important

in reducing the effects of phylogenetic artefacts such as

long-branch attraction (LBA) [28,29], especially in the

case of ancient relationships for which the phylogenetic

signal may be weak.

Here, we have compared the support for current

hypotheses of the relationship between Archaea and

eukaryotes from rRNA and protein datasets representing

the informational genes [2–9]. We included an expanded

sampling of the emerging TACK superphylum of Archaea

and used formal tests of topological congruence [30,31]

to identify and characterize the distinct phylogenetic

signals present in our alignments of conserved protein-

coding genes. Posterior predictive simulations [32] were

used to assess the fit of several different evolutionary

models to our datasets, and the effect of model fit on

inferred levels of phylogenetic incongruence was investi-

gated by analysing sets of distances between trees. Our

analyses consistently support the monophyly of eukary-

otic informational genes with the TACK superphylum,

but do not confidently identify the nearest neighbour

of eukaryotes within this group. By contrast, we find
Proc. R. Soc. B
no support for a euryarchaeal origin for eukaryotes or

for the three-domains tree. With improved archaeal

sampling, trees consistent with a broadly defined eocyte

hypothesis are recovered both with standard and with

more complex evolutionary models and for all subsets

of data.
2. RESULTS AND DISCUSSION
(a) The effect of new archaeal sequences on

ribosomal RNA trees

Historically, rRNA has been the pre-eminent molecular

marker for studies of ancient evolutionary events, and con-

flicting topologies inferred from rRNA genes have driven

much of the debate on the deep structure of the universal

tree [2,7]. In previous analyses [5,6,8,11,33], support from

rRNA genes for the three-domains or eocyte hypotheses

depended on the substitution model used: the simpler

models generally gave a three-domains tree, whereas the

more complex ones—for example, the node-discrete rate

and composition heterogeneity (NDRH þNDCH) and

CAT models [5]—gave an eocyte tree. These differences

have been interpreted in terms of model fit, with the

NDRH þNDCH and CAT models, for example,

accounting for properties of the sequence alignment that

are poorly anticipated by single-matrix models such as

the general time reversible (GTR) model. In particular,

site-specific selective constraints are not explicitly modelled

by GTR, which assumes that the probability of change

between any two nucleotides is the same at any site in

the alignment. By contrast, comparisons of real sequence

data strongly suggest that the phenotypic effect of a par-

ticular substitution, and therefore the evolutionary rate,

depends on the function and biochemical context of the

site [34]. Poor modelling of this substitution process

makes GTR vulnerable to LBA, a well-characterized

phylogenetic artefact in which parallel (convergent) substi-

tutions along long branches of the phylogeny are

misinterpreted as synapomorphies, causing these branches

to group together [29,35]. A number of authors [6,8,11]

have previously suggested that archaeal monophyly, and

hence the three-domains tree, was the result of an attrac-

tion between the very long branches leading to the

bacteria and eukaryotes. Interestingly, the CAT model,

which models site-specific substitution rates with per-site

frequency profiles and is reported to deal with LBA more

efficiently [28], recovered a topology consistent with the

eocyte hypothesis [5].

To investigate the effect of new Thaumarchaeota,

Aigarchaeota and Korarchaeota sequences on resolution

of the deep branches of the tree of life, we built align-

ments of the large subunit (LSU) and small subunit

(SSU) rRNA genes from 36 species of Bacteria, Archaea

and eukaryotes. These alignments were based on those of

Foster et al. [5] but were updated to reflect the recent

improvement in sampling of free-living microbial eukar-

yotes (Naegleria gruberi ) and TACK superphylum

members (Korarchaeum cryptofilum and Caldiarchaeum

subterraneum). The phylogenetic signal in the LSU and

SSU alignments was determined to be congruent by

two complementary methods [30,31], enabling us to con-

catenate them for further analysis. We used RAxML

v. 7.2.8 [36] to build a maximum likelihood bootstrap

tree for the combined LSU þ SSU alignment, optimizing

http://rspb.royalsocietypublishing.org/
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a GTR model separately on each partition as indicated by

jMODELTEST [37]. We also built Bayesian phylogenetic

trees under the GTR and CAT models in PHYLOBAYES,

and the NDRH þNDCH model in p4. In the following

discussions of the relationships between eukaryotes and

Archaea, we have, like others [2,9], taken the root of

the universal tree to be either within, or on the branch

leading to, the Bacteria [38–40]. This position remains

tentative (see [6] for discussion), but the three-domains

and eocyte-like trees are actually incompatible wherever

the root lies. As in previous work [5], our analyses using

the better-fitting NDRH þNDCH and CAT models

(figure 1c,d ) recovered an eocyte topology. However, in

contrast to previous results [5], our analyses also recov-

ered a strongly supported eocyte topology with the

GTR model (figure 1a).

Our failure to obtain a three-domains tree, even with

the data-homogeneous (non-mixture) GTR model, was

surprising given previous results, so we performed several

phylogenetic experiments to investigate the cause. First,

we used posterior predictive simulations [32] to evaluate

the fit of the GTR, NDRH þNDCH and CAT models

to the rRNA dataset (see the electronic supplementary

material, table S1). These tests indicated that the GTR

model is a poor fit to the dataset with respect to base com-

position and site-specific biochemical diversity. The more

complex models were each able to account for some, but

not all, of the features of the rRNA alignment. Thus, the

CAT model was much better than GTR at modelling the

site-specific features of the substitution process, but it

failed to account for the compositional heterogeneity pre-

sent in the data. Fit with respect to composition was

achieved with the NDRH þNDCH model, which

allows composition to vary over the tree [41]. These

results are similar to those reported previously, where

the NDRH þNDCH and CAT models outperformed

the single-matrix GTR model for model fit [5], and

they suggest that the newfound support from GTR for

an eocyte-like topology is not the result of improved

model fit with the updated rRNA alignment.

Since we had used a conservative masking protocol

(GBLOCKS with the default parameters) in constructing

our original alignment, we investigated whether proper-

ties of the alignment had influenced the result. We used

an alternative alignment masking protocol (the ‘automa-

ted1’ option in TRIMAl [42]) that retained substantially

more sites (2227 versus 1184 positions), and reanalysed

our data using the same methods as previously. All

three models recovered an eocyte topology from this

alignment (see the electronic supplementary material,

figure S1). Removal of the Thaumarchaeota, Aigarch-

aeota and Korarchaeota sequences, however, produced

a three-domains tree under the GTR model (figure 1b),

although an eocyte topology was still recovered under

the better fitting NDRH þNDCH and CAT models

(electronic supplementary material, figure S1). These

results suggest that increased sampling of divergent

members of the TACK group improved resolution of

the inner nodes of the tree of life, leading to the recovery

of an eocyte tree even with the simpler model of

nucleotide substitution.

Although trees inferred using all three models pro-

duced eocyte topologies (i.e. in which the TACK

sequences clustered with eukaryotes to the exclusion of
Proc. R. Soc. B
the Euryarchaeota), they also displayed significant topolo-

gical differences among major archaeal groups (figure 1).

For example, in the GTR and NDRH þNDCH trees,

the Euryarchaeota are monophyletic with maximum sup-

port, whereas in the CAT tree they were paraphyletic, also

with maximum support. To increase the number of char-

acters brought to bear on these questions we turned our

attention to conserved protein-coding genes.

(b) Support from conserved protein-coding genes

for hypotheses of eukaryotic origins

We assembled two protein datasets: a set of 29 proteins

conserved across Bacteria, Archaea and eukaryotes

(29BAE), in order to compare support for the three-

domains versus the eocyte hypotheses for eukaryotic

genes; and a larger set of 64 genes conserved in our

sample of Archaea and eukaryotes (64AE) for investigating

the in-group relationships between the eukaryotes and

specific archaeal lineages. These conserved genes (see the

electronic supplementary material, tables S2 and S3) are

mainly involved in information processing (DNA replica-

tion, transcription and translation), and includes those

that have been called the ‘genealogy-defining core’ of cellu-

lar life forms [43] or the ‘functional core of genomes’ [9]. It

has been suggested that these genes may be more resistant

to horizontal gene transfer (HGT) than the rest of the

genome because their gene products have complex cellular

interactions [44,45]. Nonetheless, information-processing

genes are not immune to HGT [46], and as the number

of markers that are concatenated to build a phylogeny

increases, so too does the probability that at least some of

them will be affected by HGT. Since phylogenetic methods

assume a single underlying topology, concatenation of

genes with different evolutionary histories could potentially

result in serious systematic error [47]. To account for

these difficulties, we used two complementary methods

to test the congruence of these information-processing

genes: CONCATERPILLAR [31] and CONCLUSTADOR [30].

Interestingly, the two methods disagreed on the level of

incongruence in our protein datasets: CONCLUSTADOR,

which uses spectral clustering of Euclidean distances to

define sets of topologically similar trees, inferred a single

congruent set from each of the 29BAE and 64AE datasets,

whereas CONCATERPILLAR, which implements a hierarchical

likelihood ratio test, inferred a number of congruent sub-

sets (five in 29BAE and 15 in 64AE) in each case. To

characterize the range of phylogenetic signals identified in

our protein datasets, we built trees for each set of genes

inferred to be congruent by either of the methods. In the

case of the 64AE dataset, we also obtained strong evidence

from a third approach (see below) that one of the genes was

incongruent; this gene was removed from the complete

concatenation, resulting in a 63AE dataset. Each congru-

ent set was analysed as a single partition using the CAT

family of phylogenetic models [34,48]. We used the full

CAT model for concatenates that were over 1000 amino

acids in length, and the CAT20 model for those that were

shorter. CAT20 is a variant of the more flexible CAT

model that contains an empirical profile mixture of 20 com-

ponents inferred from the homology-derived structures of

proteins alignment database, analogous to the empirical

substitution matrices in standard models such as LG. It is

optimized for use on smaller alignments, where CAT may

perform poorly [48]. Phylogenies inferred from the

http://rspb.royalsocietypublishing.org/
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Figure 1. Phylogenies of Bacteria, Archaea and eukaryotes inferred from concatenated rRNA. (a) A Bayesian phylogeny of Bac-
teria, Archaea and eukaryotes inferred under the GTR model, showing an eocyte-like topology in which eukaryotes emerge
from within the Archaea with maximal support (posterior probability (PP) ¼ 1). (b) Removal of recently characterized archaeal
groups (the Thaumarchaeota, Aigarchaeota and Korarchaeota) converts this tree into a canonical three-domains topology,
again with maximal support (PP ¼ 1), indicating that sampling plays an important role in the resolution of these ancient

relationships. Analyses of the full dataset using the better-fitting NDRH þNDCH (c) and CAT (d) models recover maximally
supported eocyte-like topologies; these models also recover eocyte-like topologies on the reduced dataset, without the TAK
sequences (see the electronic supplementary material, figure S1). Branch lengths are proportional to substitutions per site.
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Figure 2. Phylogenies of Bacteria, Archaea and eukaryotes inferred from conserved protein-coding genes. (a) A phylogeny

inferred from 29 concatenated proteins conserved between Bacteria, Archaea and eukaryotes. An eocyte topology was recov-
ered with strong (PP ¼ 0.99) support. In this phylogeny, the eukaryotes emerge as the sister group of Korarchaeum, nested with
the TACK superphylum. (b) A phylogeny inferred from 63 concatenated proteins shared between Archaea and eukaryotes. The
position of the root is not explicitly indicated. However, based on the result from (a) and the electronic supplementary material,
table S4, it is likely to be either within, or on the branch leading to, the Euryarchaea. If this position is correct, then the tree

shows the eukaryotes emerging as the sister group to the TACK superphylum, including Korarchaeum. These trees were
inferred using the CAT model in PHYLOBAYES. Branch lengths are proportional to substitutions per site, except the truncated
bacterial branch in (a).
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complete datasets are presented in figure 2; phylogenies

inferred from the CONCATERPILLAR-derived congruent

subsets are provided in the electronic supplementary

material, figures S2 and S3. The support from all these

analyses for current hypotheses on eukaryotic origins is

summarized in the electronic supplementary material,

tables S4 and S5.

Our analyses including bacterial outgroups consist-

ently supported the monophyly of eukaryotes with the

TACK superphylum of Archaea, to the exclusion of

the euryarchaeotes, although the strength of support for

this eocyte-like hypothesis varied with the subset of the

data analysed (see figure 2 and the electronic supplemen-

tary material, tables S4 and S5). By contrast, we found no

support for the three-domains hypothesis and the mono-

phyly of Archaea from any of these analyses. While the

monophyly of eukaryotes and the TACK superphylum

was consistently recovered, the specific relationships

within this clade were more ambiguous. The phylogeny

inferred from the 63AE dataset recovered eukaryotes and

the TACK superphylum as separate clusters (figure 2b);

in contrast, the 29BAE dataset and the two largest

CONCATERPILLAR-derived congruent subsets inferred

from the 64AE dataset supported the nesting of the

eukaryotes within the TACK superphylum, either as
Proc. R. Soc. B
the neighbour of Korarchaeum or with the relationship

unresolved (see figure 2a and the electronic supplemen-

tary material, tables S4 and S5). Given the sparse

sampling of Korarchaeota and their relatives, and the

long branch leading to eukaryotes, this finding must be

treated with caution [14]. In particular, when the bac-

terial sequences were removed from the 29BAE dataset

and the analyses were repeated, the relationship between

eukaryotes, Korarchaeum and the rest of the TACK super-

phylum collapsed to a trichotomy, suggesting that the

Korarchaeum/eukaryote link is not strongly supported (see

the electronic supplementary material, figure S6). Further

Korarchaeal genome sequences are likely to be very

informative about this part of the tree of life. It is interest-

ing to note that we consistently recovered a strongly

supported Thaumarchaeota/Aigarchaeota clade within

the TACK group, confirming the relationship between

these groups [20] and suggesting that they do not represent

the earliest-diverging archaeal lineage [16,49]; in our

trees, the eukaryotes and the TACK superphylum consist-

ently form a monophyletic group to the exclusion of

euryarchaeotes (figure 2, electronic supplementary

material, figure S2).

With the exception of Korarchaeum, our analyses did not

provide support for a specific relationship between any

http://rspb.royalsocietypublishing.org/
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members of the TACK superphylum and eukaryotes.

In particular, we found no strong support for a specific

relationship between the Thaumarchaeota and the eukar-

yotes, as has recently been suggested [21] (see the

electronic supplementary material, table S5). Further,

our results were not compatible with a sister-group

relationship [22] between the eukaryotes and the Thermo-

plasmatales, a group of euryarchaeotes. In our trees,

Thermoplasma consistently grouped within the euryarch-

aeotes, with no significant support from any analysis for a

Thermoplasma/eukaryote clade (see the electronic sup-

plementary material, table S5). To determine the reason

for this disagreement, we compared our 64-gene dataset

with that originally used to suggest the Thermoplasma

link [22]. Of the 5741 protein families examined in that

study, 41 contained both a member of the Thermoplasma-

tales and at least one eukaryote; the support for a

Thermoplasma/eukaryote link comes from 12 of these

families in which the eukaryotes and Thermoplasmatales

form a clade. Only one of these 12 protein families

(Cbf5, encoding an rRNA pseudouridine synthase) was

included in our 64-gene dataset; the others were not

included in our analyses because of their patchy distri-

bution across eukaryotes and Archaea. In the case

of Cbf5, our single-gene phylogeny did not recover a

Thermoplasma/eukaryote relationship (see the electronic

supplementary material, figure S5), and it was only

weakly supported (21% maximum likelihood bootstrap

value) in the published tree [22]. In the eight cases where

more than a single eukaryotic sequence was included in a

protein family, we built new phylogenetic trees, adding in

orthologous sequences from the TACK genomes that

have been sequenced since 2007 (see the electronic sup-

plementary material, table S6). We recovered a weakly

supported Thermoplasma/eukaryote relationship in three

trees: those based on a tRNA pseudouridine synthase

(posterior probability (PP)¼ 0.79), a wbutosine synthesis

protein (PP ¼ 0.72) and an RNA-binding protein (PP ¼

0.53); see the electronic supplementary material, figure

S5. In the tree built from the wbutosine synthesis protein,

the Thermoplasmatales clustered outside of the euryarch-

aeal radiation (PP ¼ 0.99), with their closest neighbours

being the Crenarchaeote Thermofilum pendens and the

Aigarchaeote Caldiarchaeum subterraneum. Since the

Thermoplasmatales are generally recovered within the Eur-

yarchaea (see figure 2 of this paper, or [20]), their position

in this tree is unusual, making it unlikely that we can draw

strong inferences from these data. In summary, our

analyses of concatenated proteins and re-analyses of

single-gene trees found no compelling support for a specific

role for Thermoplasma in eukaryotic origins.
(c) The effect of evolutionary model on inferred

levels of phylogenetic incongruence

The distinct phylogenetic signals we identified in our

protein datasets could have resulted from genuinely

different gene histories (HGT) or from phylogenetic

error. Current evolutionary models make assumptions

about the data, such as homogeneity of the substitu-

tion process across sites, or of composition across the

tree, that are often violated, potentially leading to topolo-

gical error. The variable position of Korarchaeum in

our analyses may reflect these issues. When analysing
Proc. R. Soc. B
different datasets (see figure 2 and the electronic supple-

mentary material, table S5) or using different

phylogenetic models (see the electronic supplementary

material, figure S6), Korarchaeum was either recovered

as the closest archaeal relative of eukaryotes or as an

early-diverging member of the TACK superphylum.

Furthermore, there were no apparent patterns in the

functions or identities of protein complexes represented

by the different congruent subsets of genes supporting

one placement or another (see the electronic supplemen-

tary material, tables S7 and S8). For example, individual

components of the large and small ribosomal subunits

were found in different congruent sets. These results

suggested that at least some of the incongruence in our

protein datasets was because of phylogenetic artefacts. If

this is the case, then the choice of evolutionary model

should affect inferred levels of incongruence, because cur-

rent models vary in their sensitivity to systematic

phylogenetic error [28]. To evaluate this possibility, we

developed a method for comparing levels of incongruence

under different evolutionary models that uses distributions

of geodesic distances [50] between trees (see figure 3 and

the electronic supplementary material). These distances

provide a continuous measure in tree space that incor-

porates differences in both branch lengths and tree

topologies. We inferred gene trees for each gene in the

64AE dataset using LG, which was the best-fitting single-

matrix model in each case, and CAT20 which, as discussed

above, is an empirical variant of the CAT model which is

more suitable for short single-gene alignments. For each

model, we calculated all pairwise geodesic distances

between trees. Although we calculated these distances in

order to compare different models, the distance distri-

butions under each model already contain some useful

information about congruence. For these 64 genes, the dis-

tributions had a marked hump in the tail (figure 3a)

corresponding to a single, clearly incongruent gene tree

(see the electronic supplementary material, figure S7); we

removed this tree from subsequent analyses, resulting in

the 63AE dataset. Interestingly, the trees inferred from

the 64- and 63-gene concatenations were topologically

identical, suggesting that—at least in this case—small

amounts of incongruent data are overpowered by the domi-

nant signal in large concatenations. Comparisons of model

fit using posterior predictive simulations indicated that

CAT20 was a better-fitting model than LG for the individ-

ual genes comprising the 63AE dataset (figure 3b), as has

previously been observed on large samples of saturated

amino acid alignments [48]. The mean squared geodesic

distance between trees inferred under CAT20 was signifi-

cantly lower than that inferred under LG (2.68 versus 3.22;

p , 0.0001; figure 3c), suggesting that trees inferred under

the better-fitting model were more congruent. This result

suggests that a significant portion of the incongruence

in the dataset can be attributed to model misspecification,

as opposed to genuinely discordant evolutionary histories.

It will be interesting to evaluate whether this result

also applies to larger-scale, less strictly filtered datasets.

In the present case, disagreement among the larger congru-

ent subsets was associated with the placement of

Korarchaeum, with broad support for an eocyte-like,

rather than a three-domains tree from the majority of

genes and subsets (see the electronic supplementary

material, tables S4 and S5).

http://rspb.royalsocietypublishing.org/
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results suggest that a significant portion of the incongruence in this dataset of informational genes can be attributed to model
misspecification, rather than genuinely distinct evolutionary histories.
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3. CONCLUSIONS
Under the three-domains hypothesis, important com-

ponents of the eukaryotic genetic machinery were

vertically inherited from a common ancestor shared

with Archaea, and this relationship is taken to explain

the shared properties of both groups. In an eocyte-like

scenario, those same eukaryotic components were verti-

cally inherited from an ancestor that was already an

archaeon, and the phylogenetic position of this ancestor

could be particularly informative about the genetic and

metabolic context of early eukaryotic evolution and for
Proc. R. Soc. B
theories of eukaryotic origins [1]. Here, we have com-

pared support for these hypotheses and others, using

conserved components of the genetic machinery. With

an updated sampling of archaeal diversity, we found no

support for the three-domains hypothesis either from

rRNA or protein-coding genes under any phylogenetic

model. Instead, we detected a congruent phylogenetic

signal that placed essential informational genes of the

eukaryotic nuclear lineage within the archaeal radiation,

sharing common ancestry with the TACK superphylum.

The monophyly of eukaryotic genes with the TACK

http://rspb.royalsocietypublishing.org/
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superphylum was consistently recovered but the specific

relationships within this clade were not decisively

resolved; in particular, we did not recover a sister-group

relationship between the Thaumarchaeota and the eukar-

yotes, as recently proposed [21]. As such, we cannot

discriminate between an origin for eukaryotic genes

from within the TACK superphylum [19], or from a

sister-group lineage. In contrast to a recent supertree

study [22], we did not find any support for a role for Ther-

moplasma in eukaryotic origins. Intriguingly, members of

the TACK superphylum encode homologues of genes

that were previously thought to be eukaryote-specific,

such as actin [51], the Cdv cell division machinery [52]

and a ubiquitin protein modification system [17],

although no single characterized TACK genome pos-

sesses all of these features. Although these genes have a

patchy distribution in extant TACK genomes, it has

been suggested that they could potentially have co-

occurred in the ancestor of the clade [19], a scenario sup-

ported by evidence for extensive reductive evolution in

the Archaea [53]. The recent report of a eukaryote-type

tubulin in Nitrosoarchaeum [54] is particularly exciting

because it implies that both actin [55] and tubulin

might have already been present in an archaeal ancestor

of eukaryotes. Thus, not only the core genetic machinery,

but also core components of the eukaryotic cytoskele-

ton could have been inherited from a relative of the

TACK Archaea.
4. MATERIAL AND METHODS
(a) Sequences and alignments

The rRNA and 29BAE protein alignments were based on those

of Foster et al. [5], but updated with the relevant sequences from

Naegleria gruberi, Korarchaeum cryptophilum, Caldiarchaeum

subterraneum and Nitrosoarchaeum limnia. Sequences were

aligned with META-COFFEE, and poorly aligning regions were

identified are removed using GBLOCKS or TRIMAl, as described

in the main text. To prepare the 64AE alignments, we per-

formed clustering of the proteomes with the Markov Cluster

algorithm of the selected taxa, and built maximum likelihood

trees from the initial clusters to identify single-copy orthologues

which were used for phylogenetic analysis. Further details of

the sequence selection and alignment protocol are provided in

the electronic supplementary material.

(b) Congruence tests

We used CONCATERPILLAR v. 1.5 [31] and CONCLUSTADOR

v. 0.1a [30] to test whether our single-gene alignments

were congruent before concatenating them for phylogenetic

analysis. In cases where these two methods disagreed, we

built phylogenies for all of the congruent sets inferred

by both methods and compared the results. To complement

and expand upon these approaches, we developed a novel

method for analysing the level of incongruence in a set of

genes and for comparing incongruence between sets of

trees inferred under different models using geodesic distan-

ces; this method is described in detail in the electronic

supplementary material.

(c) Phylogenetics

Best-fitting substitution models were chosen for the rRNA

alignments using jMODELTEST [37]. For the protein align-

ments, single-matrix substitution models were chosen using

the ProteinModelSelection script available from the RAxML
Proc. R. Soc. B
website (http://www.exelixis-lab.org/). Maximum likelihood

calculations were performed with RAxML v. 7.2.8 [36].

Bayesian Markov Chain Monte Carlo analyses were

performed using the p4 (http://code.google.com/p/p4-

phylogenetics/; Foster [41]) and PHYLOBAYES v. 3.3 [56]

packages, which implement the range of more complex

models used in our analyses. Convergence was assessed

by comparing the results from independent runs, and

model fit in the Bayesian analyses was evaluated using

posterior predictive simulations [32]. Further details of the

models and simulations used are provided in the electronic

supplementary material.
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