1,487 research outputs found
Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp
Background:
Figs and fig-pollinating wasps are obligate mutualists that have coevolved for ca 90
million years. They have radiated together, but do not show strict cospeciation. In particular, it is
now clear that many fig species host two wasp species, so there is more wasp speciation than fig
speciation. However, little is known about how fig wasps speciate.
Results: We studied variation in 71 fig-pollinating wasps from across the large geographic range
of Ficus rubiginosa in Australia. All wasps sampled belong to one morphological species (Pleistodontes
imperialis), but we found four deep mtDNA clades that differed from each other by 9–17%
nucleotides. As these genetic distances exceed those normally found within species and overlap
those (10–26%) found between morphologically distinct Pleistodontes species, they strongly suggest
cryptic fig wasp species. mtDNA clade diversity declines from all four present in Northern
Queensland to just one in Sydney, near the southern range limit. However, at most sites multiple
clades coexist and can be found in the same tree or even the same fig fruit and there is no evidence
for parallel sub-division of the host fig species. Both mtDNA data and sequences from two nuclear
genes support the monophyly of the "P. imperialis complex" relative to other Pleistodontes species,
suggesting that fig wasp divergence has occurred without any host plant shift. Wasps in clade 3
were infected by a single strain (W1) of Wolbachia bacteria, while those in other clades carried a
double infection (W2+W3) of two other strains.
Conclusion:
Our study indicates that cryptic fig-pollinating wasp species have developed on a
single host plant species, without the involvement of host plant shifts, or parallel host plant
divergence. Despite extensive evidence for coevolution between figs and fig wasps, wasp speciation
may not always be linked strongly with fig speciation
Uniformity in Association schemes and Coherent Configurations: Cometric Q-Antipodal Schemes and Linked Systems
2010 Mathematics Subject Classification. Primary 05E30, Secondary 05B25, 05C50, 51E12
Strongly walk-regular graphs
We study a generalization of strongly regular graphs. We call a graph
strongly walk-regular if there is an such that the number of walks of
length from a vertex to another vertex depends only on whether the two
vertices are the same, adjacent, or not adjacent. We will show that a strongly
walk-regular graph must be an empty graph, a complete graph, a strongly regular
graph, a disjoint union of complete bipartite graphs of the same size and
isolated vertices, or a regular graph with four eigenvalues. Graphs from the
first three families in this list are indeed strongly -walk-regular for
all , whereas the graphs from the fourth family are -walk-regular
for every odd . The case of regular graphs with four eigenvalues is the
most interesting (and complicated) one. Such graphs cannot be strongly
-walk-regular for even . We will characterize the case that regular
four-eigenvalue graphs are strongly -walk-regular for every odd ,
in terms of the eigenvalues. There are several examples of infinite families of
such graphs. We will show that every other regular four-eigenvalue graph can be
strongly -walk-regular for at most one . There are several examples
of infinite families of such graphs that are strongly 3-walk-regular. It
however remains open whether there are any graphs that are strongly
-walk-regular for only one particular different from 3
“Biodrop” Evaporation and Ring-Stain Deposits:The Significance of DNA Length
Small sessile drops of water containing either long or short strands of DNA (“biodrops”) were deposited on silicon substrates and allowed to evaporate. Initially, the triple line (TL) of both types of droplet remained pinned but later receded. The TL recession mode continued at constant speed until almost the end of drop lifetime for the biodrops with short DNA strands, whereas those containing long DNA strands entered a regime of significantly lower TL recession. We propose a tentative explanation of our observations based on free energy barriers to unpinning and increases in the viscosity of the base liquid due to the presence of DNA molecules. In addition, the structure of DNA deposits after evaporation was investigated by AFM. DNA self-assembly in a series of perpendicular and parallel orientations was observed near the contact line for the long-strand DNA, while, with the short-stranded DNA, smoother ring-stains with some nanostructuring but no striations were evident. At the interior of the deposits, dendritic and faceted crystals were formed from short and long strands, respectively, due to diffusion and nucleation limited processes, respectively. We suggest that the above results related to the biodrop drying and nanostructuring are indicative of the importance of DNA length, i.e., longer DNA chains consisting of linearly bonded shorter, rod-like DNA strands
Self-Similarity in Random Collision Processes
Kinetics of collision processes with linear mixing rules are investigated
analytically. The velocity distribution becomes self-similar in the long time
limit and the similarity functions have algebraic or stretched exponential
tails. The characteristic exponents are roots of transcendental equations and
vary continuously with the mixing parameters. In the presence of conservation
laws, the velocity distributions become universal.Comment: 4 pages, 4 figure
Structure and Magnetization of Two-Dimensional Vortex Arrays in the Presence of Periodic Pinning
Ground-state properties of a two-dimensional system of superconducting
vortices in the presence of a periodic array of strong pinning centers are
studied analytically and numerically. The ground states of the vortex system at
different filling ratios are found using a simple geometric argument under the
assumption that the penetration depth is much smaller than the spacing of the
pin lattice. The results of this calculation are confirmed by numerical studies
in which simulated annealing is used to locate the ground states of the vortex
system. The zero-temperature equilibrium magnetization as a function of the
applied field is obtained by numerically calculating the energy of the ground
state for a large number of closely spaced filling ratios. The results show
interesting commensurability effects such as plateaus in the B-H diagram at
simple fractional filling ratios.Comment: 12 pages, 19 figures, submitted for publicatio
The reversible polydisperse Parking Lot Model
We use a new version of the reversible Parking Lot Model to study the
compaction of vibrated polydisperse media. The particle sizes are distributed
according to a truncated power law. We introduce a self-consistent desorption
mechanism with a hierarchical initialization of the system. In this way, we
approach densities close to unity. The final density depends on the
polydispersity of the system as well as on the initialization and will reach a
maximum value for a certain exponent in the power law.Comment: 7 pages, Latex, 12 figure
Computational Nuclear Physics and Post Hartree-Fock Methods
We present a computational approach to infinite nuclear matter employing
Hartree-Fock theory, many-body perturbation theory and coupled cluster theory.
These lectures are closely linked with those of chapters 9, 10 and 11 and serve
as input for the correlation functions employed in Monte Carlo calculations in
chapter 9, the in-medium similarity renormalization group theory of dense
fermionic systems of chapter 10 and the Green's function approach in chapter
11. We provide extensive code examples and benchmark calculations, allowing
thereby an eventual reader to start writing her/his own codes. We start with an
object-oriented serial code and end with discussions on strategies for porting
the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An
advanced course in computational nuclear physics: Bridging the scales from
quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck,
Editor
On the structure and evolution of a polar crown prominence/filament system
Polar crown prominences are made of chromospheric plasma partially circling
the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D
dynamics of a polar crown prominence using high cadence EUV images from the
Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft
of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using
time series across specific structures we compare flows across the disk in 195A
with the prominence dynamics seen on the limb. The densest prominence material
forms vertical columns which are separated by many tens of Mm and connected by
dynamic bridges of plasma that are clearly visible in 304/171A two-color
images. We also observe intermittent but repetitious flows with velocity 15
km/s in the prominence that appear to be associated with EUV bright points on
the solar disk. The boundary between the prominence and the overlying cavity
appears as a sharp edge. We discuss the structure of the coronal cavity seen
both above and around the prominence. SDO/HMI and GONG magnetograms are used to
infer the underlying magnetic topology. The evolution and structure of the
prominence with respect to the magnetic field seems to agree with the filament
linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics
Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar
Potential common radiation problems for components and diagnostics in future magnetic and inertial confinement fusion devices
This work aims at identifying common potential problems that future fusion devices will encounter for both magnetic (MC) and inertial (IC) confinement approaches in order to promote joint efforts and to avoid duplication of research
- …
