
  

 

 

Tilburg University

Strongly walk-regular grapsh

van Dam, E.R.; Omidi, G.R.

Published in:
Journal of Combinatorial Theory, Series A, Structures designs and application combinatorics

DOI:
10.1016/j.jcta.2013.01.006

Publication date:
2013

Document Version
Peer reviewed version

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
van Dam, E. R., & Omidi, G. R. (2013). Strongly walk-regular grapsh. Journal of Combinatorial Theory, Series A,
Structures designs and application combinatorics, 120(4), 803-810. https://doi.org/10.1016/j.jcta.2013.01.006

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Oct. 2022

https://doi.org/10.1016/j.jcta.2013.01.006
https://research.tilburguniversity.edu/en/publications/fbc6dff1-78cc-4d7c-a6c8-eecdfbfc0b7b
https://doi.org/10.1016/j.jcta.2013.01.006


Strongly walk-regular graphs∗

E.R. van Dama G.R. Omidib,c,1

aTilburg University, Dept. Econometrics and Operations Research,
P.O. Box 90153, 5000 LE, Tilburg, The Netherlands

bDept. Mathematical Sciences, Isfahan University of Technology,
Isfahan, 84156-83111, Iran

cSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5746, Tehran, Iran

edwin.vandam@uvt.nl romidi@cc.iut.ac.ir

Abstract

We study a generalization of strongly regular graphs. We call a graph strongly walk-
regular if there is an ` > 1 such that the number of walks of length ` from a vertex to
another vertex depends only on whether the two vertices are the same, adjacent, or not
adjacent. We will show that a strongly walk-regular graph must be an empty graph,
a complete graph, a strongly regular graph, a disjoint union of complete bipartite
graphs of the same size and isolated vertices, or a regular graph with four eigenvalues.
Graphs from the first three families in this list are indeed strongly `-walk-regular for all
`, whereas the graphs from the fourth family are `-walk-regular for every odd `. The
case of regular graphs with four eigenvalues is the most interesting (and complicated)
one. Such graphs cannot be strongly `-walk-regular for even `. We will characterize
the case that regular four-eigenvalue graphs are strongly `-walk-regular for every odd
`, in terms of the eigenvalues. There are several examples of infinite families of such
graphs. We will show that every other regular four-eigenvalue graph can be strongly
`-walk-regular for at most one `. There are several examples of infinite families of such
graphs that are strongly 3-walk-regular. It however remains open whether there are
any graphs that are strongly `-walk-regular for only one particular ` different from 3.

Keywords: Strongly regular graphs, Walks, Spectrum
AMS subject classification: 05C50, 05E30

1 Introduction

A strongly regular graph is a regular graph such that the number of common neigh-
bors of two distinct vertices depends only on whether these vertices are adjacent or not.
Strongly regular graphs are well-studied combinatorial and algebraic objects that arise in
the study of finite groups, codes, designs, and finite geometries (see the book by Brouwer
and Haemers [4], for example). Strongly regular graphs also have prominent general-
izations in the form of distance-regular graphs (see the book by Brouwer, Cohen, and
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Neumaier [3], or the recent survey [8]) and association schemes (see the recent survey by
Martin and Tanaka [13], for example).

Because the number of common neighbors of two vertices in a graph is the same as the
number of walks of length two from one vertex to the other, we can generalize the concept
of strongly regular graph by considering the number of walks of length — say — ` from
one vertex to the other. Thus, we call a graph strongly walk-regular if there is an ` > 1
such that the number of walks of length ` from a vertex to another vertex depends only
on whether the two vertices are the same, adjacent, or not adjacent.

We remark that Godsil and McKay [10] introduced walk-regular graphs as those graphs
for which the number of walks of length ` from a vertex to itself does not depend on the
chosen vertex, but only on `. Rowlinson [14] characterized distance-regular graphs by the
property that the number of walks of length ` between two vertices depends only on ` and
the distance between the two vertices. Dalfó, Van Dam, Fiol, Garriga, and Gorissen [6]
studied several versions of so-called almost distance-regularity by generalizing Rowlinson’s
characterization. Let us emphasize that in these three papers [6, 10, 14], the mentioned
properties should (typically) hold for all `, whereas here (in this paper) we require a certain
property to hold for only one specific `.

At first sight, strongly walk-regular graphs also seem to be related to Kotzig’s conjec-
ture about generalized friendship graphs. The friendship theorem states that if a graph
has the property that every pair of vertices are connected by a unique path of length 2,
then there is a vertex that is adjacent to every other vertex; the proof of this result is in
“THE BOOK” [2, Ch. 34]. Kotzig [12] conjectured that for ` > 2, there are no graphs
with the property that every pair of (distinct) vertices are connected by a unique path of
length `. According to Kostochka (see [2, p. 225]) this has been proven for ` ≤ 33. This
conjecture and our problem are however very different. Not only do they differ because
of the difference between paths and walks, but also in the fact that Kotzig only considers
pairs of distinct vertices. We therefore leave to the reader the study of graphs with the
property that the number of paths of length ` between two distinct vertices depends only
on whether the two vertices are adjacent or not.

In this paper, we will show that a strongly walk-regular graph must be an empty
graph, a complete graph, a strongly regular graph, a disjoint union of complete bipartite
graphs of the same size and isolated vertices, or a regular graph with four eigenvalues.
This conclusion can be drawn from Theorem 3.4 and Proposition 5.1. Graphs from the
first three families in this list are indeed strongly `-walk-regular for all `, whereas the
disjoint unions of complete bipartite graphs of the same size and isolated vertices are `-
walk-regular for every odd `. The case of regular graphs with four eigenvalues, which is
discussed in Section 4, is the most interesting (and complicated) one. Such graphs cannot
be strongly `-walk-regular for even `. We will characterize the case that regular four-
eigenvalue graphs are strongly `-walk-regular for every odd `, in terms of the eigenvalues.
There are several examples of infinite families of such graphs. We will show that every
other regular four-eigenvalue graph can be strongly `-walk-regular for at most one `. There
are several examples of infinite families of such graphs that are strongly 3-walk-regular. It
however remains open whether there are any graphs that are strongly `-walk-regular for
only one particular ` different from 3.
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2 The definition and some basic observations

We will now give the formal definition of the concept of a strongly walk-regular graph as
mentioned in the introduction. For ` > 1, a graph Γ is a strongly `-walk-regular graph
with parameters (λ`, µ`, ν`) if there are λ`, µ`, and ν` walks of length ` between every two
adjacent, every two non-adjacent, and every two identical vertices, respectively. So indeed,
every strongly regular graph with parameters (v, k, λ, µ) is a strongly 2-walk-regular graph
with parameters (λ, µ, k). We exclude the case ` = 1 because every graph would be a
strongly 1-walk-regular graph with parameters (1, 0, 0). Besides strongly regular graphs,
also the empty and complete graphs give examples. Indeed, these graphs are clearly
strongly `-walk-regular for every `.

Let A be the adjacency matrix of Γ. A crucial observation is that Γ is a strongly
`-walk-regular graph if and only if A` is in the span of A, I, and the all-ones matrix J .
This follows from the following lemma that translates the combinatorial definition into an
algebraic formulation. (For background on algebraic graph theory we refer to the book by
Brouwer and Haemers [4].)

Lemma 2.1. Let ` > 1, and let Γ be a graph with adjacency matrix A. Then Γ is a strongly
`-walk-regular graph with parameters (λ`, µ`, ν`) if and only if A`+(µ`−λ`)A+(µ`−ν`)I =
µ`J .

Proof: This follows by observing that (A`)ij counts the number of walks of length ` be-
tween vertices i and j.

For a strongly regular graph Γ, its adjacency algebra (that is, the algebra spanned by
all powers of A) equals 〈A, I, J〉, so this implies that Γ is a strongly `-walk-regular graph
for every ` > 1.

Proposition 2.2. Let Γ be a strongly regular graph. Then Γ is a strongly `-walk-regular
graph with parameters (λ`, µ`, ν`) for every ` > 1 and some λ`, µ`, and ν`.

At this point it seems appropriate to remark that Abreu, Funk, Labbate, and Napoli-
tano [1] recently generalized the (strongly regular) Moore graphs with girth 5 by consid-
ering the equation ((k − 1)I + J − A2)m = A. This is however a quite different equation
in terms of A, I, and J than the one we are considering.

Let us now make some more elementary observations that will help to see which other
graphs can be strongly walk-regular.

Lemma 2.3. Let ` > 1, and let Γ be a strongly `-walk-regular graph with parameters
(λ`, µ`, ν`) with µ` > 0. Then Γ is regular and connected.

Proof: Because µ` > 0, it follows from Lemma 2.1 that J can be expressed as a polyno-
mial in A. Hoffman [11] showed that this implies that Γ is regular (by observing that A
commutes with J) and connected.

Note that also if µ` = 0, the graph can be regular and connected. The complete
bipartite graph Km,m for example is strongly 3-walk-regular with parameters (m2, 0, 0).
We will look further into the case µ` = 0 in Section 5.
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3 Connected regular graphs

We now first focus on the generic case and assume that the graphs are connected and
regular.

Proposition 3.1. A connected k-regular graph Γ on v vertices is strongly `-walk-regular
with parameters (λ`, µ`, ν`) if and only if all eigenvalues except k are roots of the equation

x` + (µ` − λ`)x+ µ` − ν` = 0

and k satisfies the equation

k` + (µ` − λ`)k + µ` − ν` = µ`v.

Proof: If Γ is a strongly `-walk-regular graph with parameters (λ`, µ`, ν`), then A` + (µ`−
λ`)A + (µ` − ν`)I = µ`J . Every eigenvalue θ unequal to k has an eigenvector that is
orthogonal to the all-ones vector (the eigenvector for eigenvalue k), hence by multiplying
the matrix equation with this eigenvector, we obtain the equation θ`+(µ`−λ`)θ+µ`−ν` =
0. By multiplying the matrix equation with the all-ones vector, the equation k` + (µ` −
λ`)k + µ` − ν` = µ`v is derived.

On the other hand, consider the distinct eigenvalues k = θ0 > θ1 > · · · > θd and the
Hoffman polynomial [11] h of Γ. Here we normalize h such that it is monic, so that

h(x) =
d∏
i=1

(x− θi). (3.1)

In fact, h(A) = h(k)
v J , because (3.1) implies that h(A) vanishes on each eigenspace of

A corresponding to an eigenvalue unequal to k, and thus it has rank 1 (because Γ is
connected) with nontrivial eigenvalue h(k) having the all-ones vector as eigenvector.

Now, if the eigenvalue θi satisfies the equation x` + (µ` − λ`)x+ µ` − ν` = 0 for every
i 6= 0, then the Hoffman polynomial divides x`+(µ`−λ`)x+µ`−ν`. Because h(A) = h(k)

v J
and p(A)J = p(k)J for every polynomial p, this implies that A`+(µ`−λ`)A+(µ`−ν`)I =
tJ for some t. As before, this implies that k` + (µ` − λ`)k + µ` − ν` = tv. But if
k` + (µ` − λ`)k + µ` − ν` = µ`v, then t = µ`, and so Γ is a strongly `-walk-regular graph
with parameters (λ`, µ`, ν`).

As a corollary, we obtain the following characterization that we will use later on.

Corollary 3.2. A connected regular graph is strongly `-walk-regular if and only if its
Hoffman polynomial divides the polynomial x` + ex+ f for some e and f .

Proof: One direction follows immediately from Proposition 3.1. To show the other direc-
tion, assume that the Hoffman polynomial divides the polynomial x`+ex+f for some e and
f . Let v be the number of vertices and k the valency of the graph. Clearly, all eigenvalues
besides k are roots of x`+ex+f . Now let µ` = 1

v (k`+ek+f), λ` = µ`−e, and ν` = µ`−f .
Then Proposition 3.1 implies that the graph is `-walk-regular with parameters (λ`, µ`, ν`).

By bounding the number of real roots of x` + ex + f , we can bound the number of
distinct eigenvalues of a strongly walk-regular graph.
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Lemma 3.3. Let ` > 1, and let p(x) = x` + ex+ f for some e and f . Then p has at most
three real roots. If ` is even, then p has at most two real roots.

Proof: The derivative of p equals p′(x) = `x`−1 + e. So p′ has at most two real roots if `
is odd, and at most one real root if ` is even. From this, the result follows.

We remark that if we know the sign of e (= µ`−λ`) and f (= µ`−ν`), then some more
information about the sign and number of real roots can be derived by using Descartes’
rule of signs (see [15]).

Because eigenvalues of graphs are real, the following result follows immediately from
Corollary 3.2 and Lemma 3.3.

Theorem 3.4. Let Γ be a connected regular strongly `-walk-regular graph with ` > 1.
Then Γ has at most four distinct eigenvalues. Moreover, if ` is even, then Γ has at most
three distinct eigenvalues and hence Γ is either a complete graph or a strongly regular
graph.

4 Graphs with four eigenvalues

Let us continue with the case of connected regular graphs. By Proposition 2.2 and The-
orem 3.4, it remains to determine the strongly `-walk-regular graphs with four (distinct)
eigenvalues for odd `. Regular four-eigenvalue graphs have been studied by Van Dam and
Spence [7, 9]. It is for example known that such graphs are walk-regular in the sense of
Godsil and McKay [10]. Because strongly regular graphs are also walk-regular, it follows
that every connected regular strongly walk-regular graph is indeed walk-regular. We re-
mark that in Section 5, we will see some nonregular strongly walk-regular graphs, and
these graphs cannot be walk-regular, because every walk-regular graph is regular.

Let Γ be a connected k-regular graph with four distinct eigenvalues k > θ1 > θ2 > θ3.
Then by working out the Hoffman polynomial (3.1), it follows that

A3 − (θ1 + θ2 + θ3)A2 + (θ1θ2 + θ1θ3 + θ2θ3)A− θ1θ2θ3I = tJ (4.1)

for some t (this t can be expressed in terms of the number of vertices and the eigenvalues,
but this doesn’t play any role in the following). This proves the following.

Proposition 4.1. Let Γ be a connected regular graph with four distinct eigenvalues k >
θ1 > θ2 > θ3. Then Γ is strongly 3-walk-regular if and only if θ1 + θ2 + θ3 = 0.

Proof: This follows from (4.1), and the fact that A2 cannot be expressed in terms of A, I, J ,
because otherwise Γ would be strongly regular, and thus have three distinct eigenvalues.

Several infinite families of examples of regular four-eigenvalue graphs with θ1 + θ2 +
θ3 = 0 can be constructed using the methods of Van Dam [7]. Many, but certainly
not all of these examples have integer eigenvalues only. For an example with noninteger
eigenvalues, consider a conference graph, that is, a strongly regular graph with parameters
(4µ+ 1, 2µ, µ− 1, µ). Its 3-clique extension (that is, every vertex is replaced by a clique of
size 3, and vertices of different cliques are adjacent if and only if the original vertices are
adjacent) has distinct eigenvalues k, 3

2(−1 +
√

4µ+ 1) + 2,−1, and 3
2(−1−

√
4µ+ 1) + 2.
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There are also some distance-regular graphs with diameter three that are strongly 3-
walk-regular, such as the line graph of the incidence graph of the Fano plane, the Perkel
graph, and the Hamming graph H(3, 3).

Another family of examples is given by the complements of the graphs Km,m ⊕ Km

(the sum [5] — also called Cartesian product — of a complete bipartite graph and a
complete graph, see [7]). The distinct eigenvalues of the complement of Km,m ⊕Km are
k = 2m(m − 1),m, 0, and −m. The zero eigenvalue simplifies (4.1) even further, and it
implies that the graph is strongly `-walk-regular for every odd `.

Proposition 4.2. Let Γ be a connected regular graph with four distinct eigenvalues k >
θ1 > θ2 > θ3. If θ2 = 0 and θ3 = −θ1, then Γ is strongly `-walk-regular for every odd `.

Proof: If θ2 = 0 and θ3 = −θ1, then the three eigenvalues θ1, θ2, and θ3 are roots of the
polynomial x` − θ`−1

1 x for every odd `, so Γ is `-walk-regular for every odd ` by Corollary
3.2.

On the other hand, if θ2 6= 0 or θ3 6= −θ1, then Γ is `-walk-regular for at most one
` > 1. In order to show this, we will use the following characterization.

Proposition 4.3. Let Γ be a connected regular graph with four distinct eigenvalues k >
θ1 > θ2 > θ3 and let ` ≥ 3. Then Γ is strongly `-walk-regular if and only if

(θ2 − θ3)θ`1 + (θ3 − θ1)θ`2 + (θ1 − θ2)θ`3 = 0. (4.2)

Proof: As before, we will use that Γ is strongly `-walk-regular if and only if the Hoffman
polynomial x3 + ax2 + bx + c divides a polynomial of the form x` + ex + f . Let x`−3 +∑`−1

i=3 αix
`−1−i be a putative quotient of these two polynomials (the unusual indexing

will turn out to be convenient), and also define α0 = α1 = 0 and α2 = 1 (these can
also be interpreted as coefficients of the same polynomial). Now consider the product
of this polynomial and the Hoffman polynomial. The coefficients of x`−1 down to x3

in this product vanish if and only if the coefficients αi satisfy the recurrence relation
αi + aαi−1 + bαi−2 + cαi−3 = 0 for i = 3, 4, . . . , `− 1. The coefficient of x2 in the product
equals aα`−1 + bα`−2 + cα`−3, so if we extend the recurrence by one more step by defining
α` such that α`+aα`−1+bα`−2+cα`−3 = 0, then it follows that Γ is strongly `-walk-regular
if and only if α` = 0.

Now all that is left is to find the solution for the recurrence relation. But the charac-
teristic polynomial of this recurrence relation is the Hoffman polynomial that has distinct
roots θ1, θ2, and θ3. Therefore αi = β1θ

i
1 + β2θ

i
2 + β3θ

i
3 for i = 0, 1, . . . , ` for some β1, β2,

and β3. Given that α0 = α1 = 0, and α2 = 1, it follows that

−(θ1 − θ2)(θ2 − θ3)(θ3 − θ1)αi = (θ2 − θ3)θi1 + (θ3 − θ1)θi2 + (θ1 − θ2)θi3,

which finishes the proof.

Theorem 4.4. Let Γ be a connected regular graph with four distinct eigenvalues k > θ1 >
θ2 > θ3. If θ2 6= 0 or θ3 6= −θ1, then there is at most one ` > 1 such that Γ is strongly
`-walk-regular.
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Proof: Suppose on the contrary that Γ is strongly `-walk-regular and strongly m-walk-
regular with m > ` > 1. Note that (4.2) implies that θ2 6= 0 if and only if θ3 6= −θ1, so we
may assume both. Similarly, we may assume that θ3 6= −θ2. A final assumption that we
will make is that θ1 > |θ2| and θ1 > |θ3|. We can do this without loss of generality because
if we replace the eigenvalues θ1, θ2, and θ3 by their opposites, then (4.2) still holds (and
we will not make use of other specific properties of the eigenvalues).

Note that (4.2) trivially holds for ` = 1, so if we define the matrix M by

M =

 θ1 θ2 θ3
θ`1 θ`2 θ`3
θm1 θm2 θm3

 ,
then the equationMx = 0 has a nontrivial solution, and so detM = 0. Because θ1θ2θ3 6= 0,
this is equivalent to (θ`−1

2 − θ`−1
1 )(θm−1

3 − θm−1
1 ) = (θ`−1

3 − θ`−1
1 )(θm−1

2 − θm−1
1 ). Now we

define the function f by f(x) = θm−1
1 −xm−1

θ`−1
1 −x`−1

, so then f(|θ2|) = f(|θ3|) (note that ` and

m are odd). We claim however that f is strictly increasing on the interval (0, θ1), which
will give the required contradiction. To prove the claim, consider the function g de-
fined by g(x) = f ′(x)(θ`−1

1 − x`−1)2/x`−2. Then it is straightforward to show that g(x) =
(m−`)xm−1−(m−1)θ`−1

1 xm−`+(`−1)θm−1
1 and g′(x) = (m−1)(m−`)(xm−2−θ`−1

1 xm−`−1).
So g(θ1) = 0 and g′(x) < 0 if 0 < x < θ1. Therefore g(x) > 0 if 0 < x < θ1, and this
implies indeed that f is strictly increasing on (0, θ1).

We tried to find (relevant) nonzero solutions to (4.2) for some small ` > 3. We could
not find integer solutions, but we did find some solutions for ` = 5 with two conjugate
noninteger eigenvalues and one integer eigenvalue (for example 5, 1

2(−3 +
√

281), 1
2(−3 −√

281)). We however have no clue whether there are any regular four-eigenvalue graphs
with these particular eigenvalues (note that there is still freedom in “choosing” the number
of vertices and the valency). It thus remains open whether there are strongly `-walk-regular
graphs with ` > 3 that are not strongly m-walk-regular for all odd m 6= `.

We note that given `, and two of the three eigenvalues, say θ2 and θ3, one can consider
(4.2) as a polynomial equation in θ1, and this has two trivial roots θ2 and θ3. By using
again Lemma 3.3, it follows that there can be no other real root for ` even (which confirms
part of Theorem 3.4), and one other real root for ` odd. In other words, for a given odd
`, and given θ2 and θ3, there is one real solution to (4.2) for θ1 that is different from θ2
and θ3. But typically this solution seems to be unfit as an eigenvalue of a graph.

5 The exceptional case

What remains in this paper is to classify the strongly `-walk-regular graphs with pa-
rameters (λ`, 0, ν`), that is, those with µ` = 0. In this case, we have the equation
A` − λ`A − ν`I = O (by Lemma 2.1). Thus, Γ is strongly `-walk-regular graph with
parameters (λ`, 0, ν`) if and only if every eigenvalue of Γ is a root of the polynomial
x` − λ`x− ν`. We again use Lemma 3.3 to obtain the following classification.

Proposition 5.1. Let ` > 1 and let Γ be a nonempty strongly `-walk-regular graph with
parameters (λ`, 0, ν`). Then either Γ is a disjoint union of complete graphs of the same
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order, or ` is odd and Γ is a disjoint union of complete bipartite graphs of the same size
and isolated vertices.

Proof: First, let ` be even. Then by Lemma 3.3, the polynomial x` − λ`x − ν` has at
most two real roots, so Γ has at most two distinct eigenvalues. This implies that Γ is the
disjoint union of complete graphs of the same order (number of vertices) [5, Thm. 6.4].

Next, let ` be odd. In this case, it follows that Γ has at most three distinct eigenvalues.
Let us assume that Γ is not a disjoint union of complete graphs of the same order, then Γ
has three distinct eigenvalues. Consider first the case that ν` = 0. Then the eigenvalues of
Γ are θ, 0, and −θ, for some θ. This implies that Γ is indeed a disjoint union of complete
bipartite graphs of the same size (number of edges) and possibly some isolated vertices
(cf. [5, Thm. 6.5]).

Finally, we consider the case where Γ has three distinct eigenvalues and ν` > 0 (and `
is odd). Now 0 is not an eigenvalue, and we will show that this gives a contradiction. Also,
in this case Γ cannot have two complete graphs of different orders as components (because
these would give different values for ν`). We assumed that Γ is not a disjoint union of
complete graphs of the same order, so there is a component C of Γ that is not a complete
graph. This component also has at most three eigenvalues, and so it has diameter at most
2. Consider vertices u and v in C that are not adjacent. Then u and v are at distance
two, and so there is a walk of length 3, and hence of length `, between v and each of
the neighbors of u. Because µ` = 0, this implies that v is adjacent to all neighbors of u.
Thus, every nonneighbor of u (including u itself) is adjacent to every neighbor of u. It
also follows easily that there are no edges among the neighbors of u and that there are no
edges among the nonneighbors of u (otherwise there would be a walk of length 3 between
u and a nonneighbor of u). Therefore C is a complete bipartite graph, which gives the
required contradiction.

Note that the disjoint union of complete graphs Kn is strongly regular, so indeed it is
strongly `-walk-regular for every ` (by Proposition 2.2). If Γ is a disjoint union of complete
bipartite graphs, all of which have the same number of edges, and possibly some isolated
vertices, then indeed Γ is strongly `-walk-regular for every odd `. Note finally that the
disjoint union of complete graphs K2 and K1 (of different orders) is a special case of a
disjoint union of complete bipartite graphs and isolated vertices, which is why we split the
cases ν` = 0 and ν` > 0 in the above proof.
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