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UNIFORMITY IN ASSOCIATION SCHEMES AND COHERENT
CONFIGURATIONS: COMETRIC Q-ANTIPODAL SCHEMES
AND LINKED SYSTEMS

EDWIN R. VAN DAM, WILLIAM J. MARTIN, AND MIKHAIL MUZYCHUK

Dedicated to the memory of Donald G. Higman

ABSTRACT. Inspired by some intriguing examples, we study uniform association schemes and
uniform coherent configurations. Perhaps the most important subclass of these objects is the
class of cometric Q-antipodal association schemes. The concept of a cometric association scheme
(the dual version of a distance-regular graph) is well-known; however, until recently it has not
been studied well outside the area of distance-regular graphs. Uniformity is a concept introduced
by Higman, but this likewise has not been well-studied. After a review of imprimitivity, we show
that an imprimitive association scheme is uniform if and only if it is dismantlable, and we cast
these schemes in the broader context of certain — uniform — coherent configurations. We also
give a third characterization of uniform schemes in terms of the Krein parameters, and derive
information on the primitive idempotents of such a scheme.

In the second half of the paper, we apply these results to cometric association schemes. We
show that each such scheme is uniform if and only if it is Q-antipodal, and derive results on the
parameters of the subschemes and dismantled schemes of cometric Q-antipodal schemes. We re-
visit the correspondence between uniform indecomposable three-class schemes and linked systems
of symmetric designs, and show that these are cometric Q-antipodal. We obtain a characteri-
zation of cometric Q-antipodal four-class schemes in terms of only a few parameters, and show
that any strongly regular graph with a (“non-exceptional”) strongly regular decomposition gives
rise to such a scheme. Hemisystems in generalized quadrangles provide interesting examples of
such decompositions. We finish with a short discussion of five-class schemes as well as a list of
all feasible parameter sets for cometric Q-antipodal four-class schemes with at most six fibres and

fibre size at most 2000, and describe the known examples.

1. INTRODUCTION

Motivated by the search for cometric (Q-polynomial) association schemes, we
study uniform association schemes. Cometric association schemes are the “dual
version” of distance-regular graphs (metric schemes), and the latter are well-studied
objects, cf. [7]. Classical metric schemes such as Hamming schemes and Johnson
schemes are in fact also cometric. Bannai and Ito [5, p312] conjectured that for
large enough d, a primitive d-class scheme is metric if and only if it is cometric.
Partly because of this conjecture, the topic of cometric association schemes was
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studied mainly in connection to distance-regular graphs, at least until the end of
last century. An exception to this is the work of Delsarte [21] (and others building
on this) who showed the importance of cometric schemes in design theory.

This slowly changed when De Caen and Godsil raised the challenging problem
of constructing cometric schemes that are not metric or duals of metric schemes
(cf. [22, p234], [35, Acknowledgments]). Around the same time, Suzuki derived
fundamental results on imprimitive cometric schemes [48] and on cometric schemes
with multiple Q-polynomial orderings [49], but examples of the above type were still
missing. In the last few years, however, there has been considerable activity in the
area, with the first new constructions of cometric (but not metric) schemes given by
Martin, Muzychuk, and Williford [35]. For a recent overview of results on cometric
schemes we refer to the survey on association schemes by Martin and Tanaka [36].
Very recent is the work of Suda [45], [46], [47], and Penttila and Williford [41].

Meanwhile, in [26]-[30], Higman obtained numerous results on imprimitive as-
sociation schemes and coherent configurations. In his paper on four-class schemes
and triality [28] and also in an unpublished manuscript [30], he introduced the con-
cept of uniformity of an imprimitive scheme, and he mentioned several examples
of such uniform schemes. It turns out that many of these examples are cometric
Q-antipodal. Inspired by this, we work out the concept of uniformity, and apply it
to cometric Q-antipodal schemes.

This paper is organized as follows. We finish this introduction with an intriguing
introductory example: the linked system of partial A-geometries that is related to
the Hoffman-Singleton graph. This example gives rise to a cometric Q-antipodal
association scheme, and illustrates many of the interesting features we will consider
in the paper. In Section 2, we remind the reader of basic background material on
association schemes, focusing in particular on the natural subschemes and quotient
schemes of an imprimitive association scheme. The main results for the first half
of the paper are to be found in Sections 3 and 4. We first show in Section 3.1 that
the dismantlability property introduced in [35] is implied by Higman’s uniformity
property [30]. In order to establish the reverse implication, we need to consider
a fission of our uniform association scheme whose adjacency algebra is necessarily
non-commutative. So we introduce coherent configurations at this point to draw
out the deeper structure that occurs here. Only at the level of this more detailed
structure do we see the full equivalence of the dismantlable and uniform properties
in Theorem 4.3. We finish the first half of the paper with another characterization
of the same phenomenon in Section 4.3, this time cast in terms of Krein parameters
only. We introduce Q-Higman schemes and show that these, too, are equivalent
to uniform schemes. To place the main concepts discussed here in perspective, we
summarize them in the Venn diagram of Figure 1 below.

The second half of the paper returns to the cometric case and explores the
implications of the results discussed above for cometric Q-antipodal schemes. In
Section 5, as in Sections 2 and 3, we strive to make the paper fairly self-contained;
we include all definitions that are not available in the standard literature. We show
that each cometric scheme is uniform if and only if it is Q-antipodal, and derive
results on the parameters of the subschemes and dismantled schemes of cometric
Q-antipodal schemes. This general discussion of cometric Q-antipodal schemes is
followed by three more detailed sections focusing on such association schemes with
a small number of classes. In Section 6, we show that uniform indecomposable
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three-class schemes are always cometric Q-antipodal, and that these correspond
naturally to linked systems of symmetric designs. In Section 7, we study the more
complicated case of four-class schemes. We obtain a characterization of cometric
Q-antipodal four-class schemes in terms of just a few of their parameters, and
show that any strongly regular graph with a (“non-exceptional”) strongly regular
decomposition gives rise to such a scheme. An exciting special case of recent interest
is that of hemisystems in generalized quadrangles. To facilitate future work on such
problems, we generate a list of all feasible parameter sets for cometric Q-antipodal
four-class schemes with at most six fibres and fibre size at most 2000, and describe
the known examples from this table. In the short Section 8, we mention some
examples of five-class schemes that are cometric Q-antipodal. The final section,
Section 9, collects some miscellaneous remarks.

As background we refer to Cameron [10] and Higman [26] for coherent configu-
rations, and to Bannai and Ito [5], Brouwer, Cohen, and Neumaier [7], Godsil [22],
and Martin and Tanaka [36] for association schemes.

association schemes

uniform
Il
dismantlable
1l
Q-Higman

cometric
Q-antipodal

FIGURE 1. Venn diagram of relevant types of association schemes

1.1. A linked system of partial \-geometries related to the Hoffman-
Singleton graph. The maximum size of a coclique in the Hoffman-Singleton graph
is 15. There are 100 cocliques of this size, and it is known that one can define a
bipartite cometric distance-regular graph I' with diameter four and valency 15 on
these 100 cocliques by calling two cocliques adjacent whenever they intersect in
eight vertices, cf. [7, p393]. Miraculously, the distance-four graph I'y of this graph
forms a Hoffman-Singleton graph on each part of the bipartition. Moreover, the
union of I' and I'y is the so-called Higman-Sims graph. In fact, in this way it is
clear that the Higman-Sims graph can be decomposed into two Hoffman-Singleton
graphs; here we have a strongly regular decomposition of a strongly regular graph,
in the sense of Haemers and Higman [25]. The incidence structure that I' induces
between the two parts of the bipartition is a so-called strongly regular design as
defined by Higman [27], and more specifically a partial Ad-geometry as defined by
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Cameron and Drake [12]. Building on a description of the Hoffman-Singleton graph
by Haemers [24], Neumaier [40] describes this partial A-geometry — and hence the
graph T' — using the points, lines, and planes of PG(3,2). So far, so good.

Neumaier goes on to describe how I' can be constructed in the Leech lattice. Us-
ing the group 2-Us(5) - S3, he finds three types of 50 vectors each, and between each
two types of 50 vectors the above partial A-geometry. Moreover, these geometries
are linked: we have a linked system of partial A\-geometries.

What is going on combinatorially is that one can extend the distance-regular
graph I' by the 50 vertices of the Hoffman-Singleton graph, by calling a coclique
adjacent to a vertex whenever the coclique contains the vertex. This gives a 30-
regular graph on 150 vertices, and it generates a uniform imprimitive four-class
association scheme. This association scheme turns out to be cometric too (but it is
not metric); in fact it is Q-antipodal with three fibres of size 50. Here (again) one
of the relations forms a Hoffman-Singleton graph on each fibre, and between each
pair of fibres is the incidence structure of a partial A-geometry (strongly regular
design).

One natural question is whether you can throw in another 50 vertices, and get
yet another cometric association scheme. We address this specific case in Section
7.6.2, and give a general bound on the number of fibres in Section 7.6.1.

Higman also gives the above example in his paper on four-class imprimitive
schemes [28], and in his unpublished manuscript on uniform schemes [30]. This
fairly small example illustrates most of the central features considered in this paper
and, in our view, the attractive interplay of combinatorial subjects that one sees in
the study of cometric Q-antipodal association schemes.

2. ASSOCIATION SCHEMES

Our goal in this section is to review briefly the basic definitions from the theory
of association schemes that we will need and to summarize some necessary ma-
terial from the theory of imprimitive schemes. We defer our review of coherent
configurations to Section 4 since their role will become clear at that point in the
narrative.

2.1. Definitions. A (symmetric) d-class association scheme (X, R) consists of a
finite set X of size v and a set R of relations on X satisfying

e R={Rp,...,Rq} is a partition of X x X;

o Ry =Ax = {(z,x)|r € X} is the identity relation;

e R! = R, for each i, where R := {(2,9)|(y,z) € Ri};

e there exist integers p?j such that

Hz e X|(z,2) € R; and (2,y) € R;}| :pﬁlj
whenever (z,y) € Ry, for each 4,j,h € {0,...,d}.

The integers p?j are called the intersection numbers of the scheme.

The adjacency matrix A of a relation R on X is a v x v (0, 1)-matrix defined
by (Ar)sy = 1if (z,y) € R, and zero otherwise. In this case, we abbreviate by
A; := Ap, the adjacency matrix of relation R; and consider A := (A;]i =0, ...,d).
Then this vector space is a (d + 1)-dimensional commutative algebra of symmetric
matrices; this is called the Bose-Mesner algebra of the association scheme. Such
an algebra admits a basis of pairwise orthogonal primitive idempotents (a nonzero
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idempotent E of A is called primitive if AE is proportional to E for each A € A).
We denote these by Ey, E1,..., Fq with the convention that Ey = %J where J =
>-; A; is the all-ones matrix. The first and second eigenmatrices of the scheme are
denoted by P and @, respectively, and are defined by the change-of-basis equations

Ai = ZPJZE] and Ej = %ZQ”AZ
J 4

We abbreviate v; := Py; = pY; and call this the i*® valency; likewise, m; := Qq; = ay;
is called the j'" multiplicity of the scheme.

The algebra A is also closed under entrywise (Schur-Hadamard) multiplication o
of matrices because A; 0 A; = 6;;A;. (We call these (0,1)-matrices the Schur idem-
potents of .A.) The (nonnegative) Krein parameters (or dual intersection numbers)
qlhj are the structure constants for this multiplication with respect to the basis of
primitive idempotents:

1
EioEj=—% aEn.
h

2.2. Metric schemes and cometric schemes. The association scheme (X,R)
is called metric (or “P-polynomial”) if there exists an ordering Ry, R1, ..., Rq of
the relations for which

e pli =0 whenever 0 < h < |i — j| or i+ j < h, and

° pf;j > 0 whenever pij‘j is defined.
An ordering with respect to which these properties hold is called a P-polynomial
ordering. In this case, R; can be interpreted as the distance-i relation in the simple
graph (X, Ry) which is necessarily distance-regular. Metric schemes with given P-
polynomial orderings are in one-to-one correspondence with distance-regular graphs.

The association scheme (X,R) is called cometric (or “Q-polynomial”) if there

exists an ordering of the primitive idempotents Ey, E1, ..., E4 for which

. quOwhenever0§h<|i—j| ori+j<h,and

) quj > 0 whenever qf}‘j is defined.
It is well known (cf. [7, Prop. 2.7.1]) that to check that a scheme is cometric it
suffices to check these properties for i = 1. An ordering with respect to which these
hold is called a Q-polynomial ordering, and E; is called a Q-polynomial generator.
There is no known simple combinatorial or geometric interpretation of the cometric
property. Suzuki [49] showed that, while it is possible to have two distinct Q-
polynomial orderings, there can be no more than two such orderings for a given
association scheme, with the exception of the cycles. Several important families of
association schemes, such as the Hamming schemes and Johnson schemes, are both
cometric and metric. But our study here does not assume the metric property at
all.

Let ¢ := ¢}, 1,a] := qi;, and b} := ¢} ;,;. Then ¢ 4+ a} + b = ¢}, and the
Krein array of the cometric association scheme is defined as
{b5, b7, .05 ¢T 5, et

Using the Krein array, we define a sequence of orthogonal polynomials ¢;, j =
0,1,..,d +1 by go(z) = 1, ¢i(z) = z, and the three-term recurrence zgq;(x) =
¢i19j+1(x) +ajq;(x) +bj_1qj—1(x), where we let ¢j,, := 1. It follows that vE; =
¢;(vEy), j = 0,1,...,d where matrix multiplication is entrywise (and hence the
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empty product is J). Moreover, because vE; o Eg = b)_Eq—1 + a’;Eq, we have
that the roots of gq41(x) are precisely Q;; for i = 0,...,d. It is now easy to see that,
whenever F; is a Q-polynomial generator for the Bose-Mesner algebra, column one
of the matrix ) has d + 1 distinct entries.

2.3. Imprimitive schemes. The association scheme (X, R) with Bose-Mesner al-
gebra A, adjacency matrices A;,7 = 0,1,...,d, and primitive idempotents F;, j =
0,1,...,d is called imprimitive if at least one of its nontrivial relations is discon-
nected (as a graph). It was first shown by Cameron, Goethals, and Seidel [14] (and
not hard to verify, cf. [5, Thm 9.3, Thm. 4.6]) that imprimitivity is equivalent to
each of the following properties:
e there is a set Z with {0} € Z € {0, 1, ...,d} such that (4;]i € Z) is a matrix
subalgebra of A;
e there is a set J with {0} € J € {0,1,...,d} such that (E;|j € J) is a
o-subalgebra of A;
e there is a matrix! F € A, not 0, I, or J, such that E2 = nFE and EoF = E
for some n;
e the matrix F; has repeated columns for some j > 0.

For an imprimitive scheme, the sets Z and J may not be unique, however the
various index sets Z and J are paired by the following equation:

(2.1) D Ai=nd Ej=1,®1J,
€T JjET

for some choice of ordering of the vertices. Thus the v vertices are partitioned into
w fibres of size n. Like Z and J, this partitioning F into fibres — the so-called
imprimitivity system — may not be unique, but each of Z, J, F is well-defined
given any other one of the three. In the remainder of the paper we will always
assume however that Z, J, and the imprimitivity system are fixed and given, unless
mentioned otherwise. Of the equivalent statements of imprimitivity, the last one
could be explained as “dual imprimitivity”. In fact, in this case each of the matrices
Ej, j € J is constant on each fibre U € F (i.e., columns x and y of F; are identical
when z,y € U). This is analogous to the fact that each relation R;,i € T is
disconnected.

It easily follows that on each fibre U € F, there is an association scheme — a so-
called subscheme — induced by the relations indexed by Z. In fact, the intersection
numbers ﬁfj of the subscheme are the same as the corresponding ones in the original
scheme, i.e.,

Py =pl.i,5,h € T.
To put things differently, B := (A4;]i € I) is a Bose-Mesner subalgebra of the
Bose-Mesner algebra A (i.e., B is a subalgebra under both ordinary and entrywise

multiplication). For later purpose, we define a linear (projection) operator 7 : A —
A by

(2.2) m(A) = Ao (I, ®Jp)

for A € A. Tt is clear that 7(Ao A”") = w(A) o w(A’) for all A, A’ € A. Because the
map 7 sends A = Z:'l:o ciAi 0 ), 7 ¢i Ay, it is also clear that 7(.A) = B. Note also

IThis matrix is given by Equation (2.1).
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that B is a o-ideal in A, because if A € A and B € B, then Ao B = Aon(B) =
m(A)o B € B.

Each imprimitivity system also gives us a quotient association scheme. Dual to
B, consider

C:=(Ejlj € J) = {A(lw ® Jn)|A € A};

this is also a Bose-Mesner subalgebra of A. It is the image of .4 under the projection
m* which sends A = Z?:o ¢;Ej to m(A) == 2 A(L, ® J,) = Y jes ¢iEj. Each
Schur idempotent of C must be a sum of certain A; and if A = ZZEH A; satisfies
A= LA, ®J,), then Ay, = Ay, whenever  is in the same fibre as 2/, and y is
in the same fibre as 3. So, for each C' € C, there exists a well-defined w x w matrix
1(C) satisfying

C=uC)® Jp.

It is not hard to verify that the set {¢(C)|C € C} is a Bose-Mesner algebra also;
this gives an association scheme — the so-called quotient scheme — on the set of
fibres. In this case, the Krein parameters of this quotient scheme are the same as
the corresponding ones in the original scheme (cf. [7, Sec. 2.4]). For completeness
we mention that Rao, Ray-Chaudhuri, and Singhi [42] obtained results on the
composition factors of imprimitive schemes.

For the topic of this paper — uniform schemes and, later, cometric Q-antipodal
schemes — our main interest is in the relation between the scheme and its sub-
schemes. The corresponding quotient scheme is in this case trivial, that is, a
one-class scheme corresponding to a complete graph. The relationship between
the scheme and its subschemes and quotient schemes is essentially worked out by
Bannai and Ito [5, Thm. I1.9.9] (see also [7, Section 2.4] for some information on
the relation between the parameters). However, to get a better understanding of
what is going on, we include some of their arguments and results (and those of
others) applied to subschemes here. (Moreover, Bannai and Ito treated the dual
case, which, even though it is analogous, may sometimes be confusing.) By doing
this, we derive in Lemma 2.4 another (and new, as far as we know) relation between
the parameters.

Following Bannai and Ito, we define the relation ~* on the index set {0, 1, ..., d}
(indexing the primitive idempotents) by

iw*j:c)qlhj;éOforsomehej.

*

Lemma 2.1. The relation ~* is an equivalence relation.

Proof. If i ~* j ~* I, say qu # 0 and q?l/ # 0 with h,h' € J, then by using a
standard identity (cf. [5, Prop. I1.3.7(vii)], [7, Lem. 2.3.1(vi)]) and the fact that
ql., = 0if h" ¢ J, we obtain that

d d
Lo — Lo N i
Z Qin Qnw = Z Qv Qnw = Z Gndjrn 2 Gipine > 0,
heg h'=0 §'=0
and it follows that for some h” € J we have qihl” #0,ie.,1~*1[ O

One of the equivalence classes of this relation must be J =: Jy, and we label the
others by J1,..., Je.
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Example 2.2. In the linked system of geometries described in the introduction,
we obtained a four-class imprimitive association scheme on 150 vertices. In that
example, if we use the @Q-polynomial ordering of the eigenspaces, the relation ~*
has equivalence classes Jy = {0,4}, 71 = {1,3} and J» = {2}, which, as we shall
later see, is indicative of the Q-antipodal case.

Now we claim that the idempotents
Fji= Y Ejj=0,1,..e
J'eT;

are the primitive idempotents of B, and hence by restricting these to a fibre we
obtain the primitive idempotents of the subscheme on that fibre. To prove this
claim, and to obtain a useful relation between the Krein parameters of A and B,
we define the nonnegative parameter

(2.3) pé- = Z qéh,
heJ
and note that p; = 0 if and only if i ~* j. We abbreviate pg =:pj.
Lemma 2.3. The primitive idempotents of B are F;, 7 = 0,1,...,e, so B has
dimension |I| = e + 1. Moreover, if j' € J;, then m(Ej) = 2L F;.

w

Proof. We first note that each primitive idempotent of B is a sum of primitive
idempotents of A, and because Z?:o E; =1 € B, each E; appears in exactly one
such sum. Then for each j =0,1,...,d, we use (2.2), (2.1), and (2.3) to find

d
1 .
heJ =0

Thus, if H C {0,...,d} and F := Z]EH E; is any idempotent of B, then

d
F=n(F)=Y n(E))= %Z > pLE;.

JjEH =0 jeH

This implies that if i ¢ H, then >°; 4 pi =0, ie., ifi ¢ Hand j € H, then i =<* j,
which proves that H is a union of equivalence classes of ~*.

On the other hand, take any 0 < j < d and consider the primitive idempotent
F :=3", o4 En for which j € H. Because 1 Z?:o piE; = m(E;) € B, it is a linear
combination of primitive idempotents of B with a nonzero coefficient for F' because
p; > 0. So, if h € H, then p;‘ > 0, which shows that h and j are in the same
equivalence class. We may therefore conclude that H is an equivalence class of ~*.

Thus, the primitive idempotents of B are F}, j =0,1,...,e. For j' € J;, it then
also follows that m(E;/) = = Dim pé,Ei is a multiple of one of these idempotents.

So pé, = p; for all i ~* j', and 7(Ej/) = %Fj. O

By working out the products F; o F};, the Krein parameters (Zhj of the subscheme
can now be easily expressed in terms of those of the original scheme as

1 ,
~h h
U= 2. Wy

'€J:,5' €T;
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for each W' € J,. Moreover, it follows that the eigenmatrices P and Q of the
subscheme are given by

}?ji = Pj’ia iEI,j’EJj,j:O,l,...,e;

Qij = wXjyey Qi 1€L,j=0,1,.e

However, the second part of Lemma 2.3 can be used to get another useful expression
of the Krein parameters of the subschemes.

(2.4)

Lemma 2.4. Ifi' € J;, j' € J;, then
1

~h _ R’
di; = Ph' 4 -

Pi Pj’ hedn

Proof. Let i' € J;, j' € Jj, then

€

9 d
2 _ N W Z h’ _ lz Z n'
pi/pj/Fi o Fj =w 7T(El/ o Ej/) = 0 qi/jﬂT(Eh/) = n ph/qi,j,Fh,
h'=0 h=0h'€Thn

which was to be proven. (I

3. UNIFORM IMPRIMITIVE SCHEMES

So far we have given a selective review of imprimitive association schemes, fo-
cusing on the eigenspaces and the Krein parameters of subschemes. Exploring
imprimitivity further, the main goal of this section is to reconcile the concept of
dismantlable association scheme introduced in [35] with the concept of uniform
association scheme introduced earlier in [30].

3.1. Dismantlability and uniformity. Besides the usual subschemes on each
fibre, it was proven in [35, Thm. 4.7] that a cometric Q-antipodal scheme has so-
called dismantled schemes on each union of fibres. To generalize this result, and to
obtain more information on these dismantled schemes in the subsequent sections,
we first define the following.

For a subset Y of the vertices, let Y be the v x v diagonal (0, 1)-matrix with
(IY)., = 1 if and only if z € Y. For a matrix M, we let

MYZ .= 1Y MI?

for subsets Y and Z. Put differently, MY Z is the v x v matrix containing the
submatrix My z, and that is zero everywhere else. Algebraically, in most of the
following it turns out to be more convenient to work with the matrices MY # than
with the usual submatrices My z, although essentially they are the same. For a
relation R we define related notation

RYZ :=RN(Y x Z).

In case Y = Z, we often use shorthand notation MY := MYY and RY := RYY.
For a set R of either matrices or relations, we let RY := {RY|R € R}.

Definition 3.1. An imprimitive association scheme (X, R) is called dismantlable
if (Y,RY) is an association scheme for each union Y of fibres. In this case, the
association scheme (Y,RY) is called a dismantled scheme on Y, if Y is the union
of at least two fibres.
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This definition first appears in [35] where the structure of cometric Q-antipodal
association schemes is considered. We shall see in Corollary 4.4 that two dismantled
schemes (Y,RY) and (Y’,RY") of (X,R) with |Y| = |Y’| always have the same
parameters.

Bipartite schemes, i.e., imprimitive schemes with two fibres, are trivially disman-
tlable. Other examples of dismantlable schemes are the so-called uniform associa-
tion schemes, as defined by Higman in his paper on four-class imprimitive schemes
[28] and more generally in an unpublished manuscript [30]. Informally speaking,
an imprimitive scheme is uniform if the intersection numbers are divided uniformly
over the fibres whereas, in the general case, only the valencies enjoy this property.

To define uniform schemes precisely, we first introduce a bit of notation. Consider
an imprimitive scheme with a trivial quotient scheme, i.e., where the quotient is
a complete graph. As in Equation (2.1), let Z denote the indices of relations that
occur in the subschemes. For fibres U and V', we denote by Z(U, V') the index set of
relations that occur between U and V; so AYV is nonzero precisely if i € Z(U, V).
Because we are assuming that the quotient is a complete graph, Z(U, V) equals 7
if U=V, and Z(U,V) = Z (the complement of ) if U # V.

Definition 3.2. An imprimitive association scheme is called uniform if its quotient
scheme is trivial, and if there are integers azhj such that for all fibres U, V, and W,
and ¢ € Z(U,V), j € Z(V,W), we have

UV ,VW _ h AUW
(3.1) ATV AT =N "al ATV
h

It is easily seen that in this case pfj = a?j ifieZorjel, plhj = (w—l)a?j ifi,j¢7
and h € Z, and p?j = (w — 2)@% if i,7,h ¢ Z, i.e., the intersection numbers are
divided uniformly over the relevant fibres. Note that bipartite schemes are trivially
uniform. Also, any imprimitive d-class association scheme with only one relation
across fibres (a complete multipartite graph) is uniform. Such a scheme can easily
be constructed as a wreath product scheme [50, p44], [2, p69] of a trivial scheme
and an arbitrary scheme. Also the tensor product [50, p44] of a one-class scheme
and an arbitrary scheme is uniform. (This is also called the “direct product” [2,
p62].) In this paper, we call a scheme decomposable if it is has the same parameters
as a wreath product or tensor product scheme.

Theorem 3.3. A uniform scheme is dismantlable. Any dismantled scheme of a
uniform scheme is also uniform.

Proof. These claims follow in a straightforward way from the definition of a uniform
scheme. 0

In Section 4.2 we will show the converse of this proposition, namely that every
dismantlable scheme is uniform.

3.2. Linked systems and triality. In Section 1.1 we described what we (and
Neumaier [40]) called a linked system of partial A-geometries. This linked system
is in fact a uniform association scheme with three fibres of size 50. The term linked
system was coined by Cameron [9] for linked systems of symmetric designs (see also
Section 6).

Example 3.4. There are three non-isomorphic (16, 6, 2) symmetric block designs.
Each incidence structure gives us a three-class bipartite association scheme with
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two fibres of size sixteen. But only one of these can be extended to a linked system
of symmetric designs with eight fibres of size sixteen. This is a uniform cometric
scheme on 128 vertices and is the first example in an infinite family which arises
from the Kerdock codes [16] (see also [38, 35]).

Following Neumaier, and also Cameron and Van Lint [15] (see Section 7.1), we will
use the term linked system informally for the combinatorial structure underlying a
uniform association scheme. Note also that Higman [28] mentions the term “system
of uniformly linked strongly regular designs”. We will now describe an infinite
family of such systems, which we refer to as Higman’s “triality schemes”.

Example 3.5. The dual polar graph Dy4(q) is a cometric bipartite distance-regular
graph defined on the maximal isotropic (four-dimensional) subspaces in GF(q)®
with a quadratic form of Witt index 4. One can extend this graph by a third
fibre containing the isotropic one-dimensional subspaces. In this way one obtains a
uniform association scheme that is cometric Q-antipodal. Higman [28] explains how
this scheme is obtained from classical triality related to the group O;‘ (¢), and also
how some other sporadic examples, such as the one in Section 1.1, have a triality
related to some group. Higman also mentions that related to these examples are
certain coherent configurations.

4. COHERENT CONFIGURATIONS AND UNIFORMITY

To understand uniformity better, we will need to recall certain combinatorial
structures that are more general than association schemes. As we will see, a (sym-
metric) d-class association scheme can be viewed as a homogeneous coherent con-
figuration of rank d + 1 in which all relations are symmetric.

4.1. Definitions and algebraic automorphisms. A coherent configuration is a
pair (X,S) consisting of a finite set X of size v and a set S of binary relations on
X such that

S is a partition of X x X;

the diagonal relation Ax is the union of some relations in S;
for each R € S it holds that R" € S;

there exist integers pSRT such that

{z € X[(x,2) € S and (2,9) € T}| = pgr
whenever (z,y) € R, for each R, S,T € S.

The relations of S are called basic relations of the configuration. A basic relation R
is called a diagonal relation if R C Ax. Each diagonal relation is of the form Ay for
some U C X. Because the relations of S form a partition of X x X, the diagonal
relations of § form a partition of Ax. Thus there exists a uniquely determined
partition of X into a set Fs of w fibres such that Ay € S for each U € Fs. The
numbers v = | X| and |S| are called the order and the rank of the configuration,
respectively.

Given R € S and x € X we define R(z) := {y € X|(z,y) € R}. For any
basic relation R we define its projections onto the first and second coordinates as
pri(R) := {z € X|R(z) # 0} and pry(R) := pry(R"). One can show that these
projections are fibres. So, each basic relation R is contained in pri(R) X pry(R).
We write SUV for the set of all basic relations R € S with pry(R) = U, pry(R) =V,
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and ryy = |SYV|. Note that ryy = ryy and |S| = > vy ruv. The w x w integer
symmetric matrix (ryy) is called the type of the configuration.
The last axiom of the definition of coherent configuration implies that

AsAr = pirAg.
R

It thus follows that the vector subspace of Mx (C) spanned by the adjacency ma-
trices Ag, R € S is a subalgebra of the full matrix algebra Mx (C). It also explains
why the intersection numbers pf, are sometimes called structure constants. The
subalgebra is called the adjacency algebra of S and will be denoted by C[S]. This
algebra has the following properties:

it is closed with respect to (ordinary) matrix multiplication;

it is closed with respect to entrywise (Schur-Hadamard) multiplication o;
it is closed with respect to transposition ';

it contains the identity matrix I and the all-ones matrix J.

Any subspace of Mx (C) which satisfies these conditions is called a coherent algebra.
There is a one-to-one correspondence between coherent configurations on X and
coherent algebras in Mx (C), i.e., each coherent algebra is the adjacency algebra of
a uniquely determined coherent configuration.

An algebraic automorphism of S is a permutation o € Sym(S) which preserves
the structure constants, that is, pf, = ngg))a(T) for all R, S,T € S (an algebraic
automorphism of an association scheme is also called a pseudo-automorphism, cf.
[32]). One can extend such a o to a linear map from C[S] into itself by setting
(> pes @RAR) = Y pes @RA(r). This yields an automorphism of the adjacency
algebra; the linear map defined in this way preserves the ordinary matrix product,
Schur-Hadamard product, and matrix transposition, i.e., 0(AB) = 0(A)o(B), o (Ao
B) = o(A) o o(B), and o(AT) = o(A)" for all A,B € C[S]. Vice versa, each
permutation o which preserves these three operations is an algebraic automorphism
of S.

The algebraic automorphisms of S form a group (which is a subgroup of Sym(S)),
which will be denoted by AAut(S). Any subgroup G < AAut(S) gives rise to a
fusion configuration §/G whose basic relations are Ugco R, O € Q, where (2 is the
set of orbits of & under the action of G. The adjacency algebra of S/G can be
characterized as the subspace of C[S] consisting of all G-invariant elements of C[S].

The matrices IV, U € Fs are the only idempotent matrices of the standard basis
{Ag|R € S} of (X,S). Therefore any algebraic automorphism o of S permutes
these diagonal matrices, hereby also inducing a permutation U — o(U) on the set
of fibres. So, instead of o(IV), we could also write 17(V).

If G < AAut(S) acts transitively on the set of fibres, then §/G is homogeneous,
that is, it is a coherent configuration with one fibre, or in other words, a — possibly
nonsymmetric — association scheme.

4.2. Uniformity in coherent configurations. We now make a fundamental ob-
servation about uniform association schemes. Consider such a scheme (X, R), with
related (generic) notation as above. It follows immediately from (3.1) that the set
of relations S := {RVV|i € Z(U,V); U,V € F} forms a coherent configuration,
with the same fibres as those of the association scheme, i.e., Fs = F. More-
(RYYV) = R77

over, any o € Sym(Fs) acts as a permutation on S by ¢ ), for
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i€ Z(U,V) =Z(c(U),o(V)). In this way, o is an algebraic automorphism of S,
because if i € Z(U, V), j € Z(V,W), h € Z(U, W), then

Rthjw RZ(U)"(W) _ U(ng)
pR;f(U)a(V)RJa(V)a(W) = pa(R?V)a(RJ‘/W)'

_ _h
Pruv gvw = Qij
T J

Moreover, the fusion scheme S§/Sym(Fs) is the association scheme that we started
from. These observations are the motivation for the definition of a uniform coherent
configuration. But first we need a little more terminology. We say that two triples
(U,V,W) and (U’,V',W’') of fibres have the “same type” if and only if there is a
permutation o of the fibres such that o((U,V,W)) = (U, V', W").

Definition 4.1. A coherent configuration (X,S) with at least two fibres is called
uniform if there are complementary sets of indices Zs > 0 and Zs of sizes es + 1
and fs (say), respectively, such that the basic relations R € S can be relabeled as
R=SYV (U =pry(R),V =pry(R), i € Is UZLs) such that
o SYU = Ay for each fibre U;
o SUU = [SUU|i € T} for each fibre U and SYV = {SYV|i € Ts} for all
fibres U # V;
o (SUV)T = SV for all fibres U # V;
e for any two triples (U,V,W) and (U’,V’',W’) of the same type and any

1€Zs(U,V), jeZs(V,W), h € Zs(U, W), it holds that

uw suw’

(4.1) psgjvs;/w :pS?'V'SJV'W/'
In this definition Zg(U, V) is defined in the same way as before: it equals Zg if
U =V, and Zs otherwise. Without loss of generality we will assume that Zs UZs =
{0,...,es + {s}.

It is clear from the above observations that from a uniform association scheme
one obtains a uniform coherent configuration with Fs = F, Is = Z, Is = Z,
es=e,ls=d—e, and SYV = RVV.

Conversely, given a uniform coherent configuration, any permutation o of the
fibres acts — just as in Section 4.1 — as an algebraic automorphism of S, by
(4.1). Thus, the relations R; := Uy ySYY are the relations of the (es + £s)-class
association scheme S/Sym(Fg). It is clear that this scheme is imprimitive with
F = Fs and T = g, and that its quotient scheme is trivial. Because (3.1) follows
from (4.1), this scheme is uniform. We have thus shown a one-to-one correspondence
between uniform association schemes and uniform coherent configurations.

Proposition 4.2. If (X,R) is a uniform association scheme, then (X,{RYV|i €
Z(U,V); U,V € F}) is a uniform coherent configuration. Conversely, if (X,S) is a
uniform coherent configuration, then after relabeling (X, {UyvSYV]i =0, ...,es +
ls}) is a uniform association scheme on X.

We will now use this one-to-one correspondence to show that every dismantlable
association scheme is uniform.

Theorem 4.3. An association scheme is dismantlable if and only if it is uniform.

Proof. One direction has already been shown in Theorem 3.3.

Let (X, R) be a dismantlable association scheme. Because bipartite schemes are
uniform, we may assume that w > 3. We must first check that the quotient scheme
is trivial. To see this, it suffices to show that, for any three distinct fibres U, V and
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W, Z(U,V)=Z(V,W). But this is clear since the dismantled scheme on vertex set
Y =U UV UW is still imprimitive and there is only one choice for its quotient:
the trivial scheme on three vertices. So Z(U,V) =Z(V,W) =T.

Next, we claim that S := {RVV|i € Z(U,V); U,V € F} forms a coherent config-
uration on X. In order to do this, we will have to consider the intersection numbers
of the dismantled schemes (Y,RY) where Y is a union of fibres, which we denote
by p?j (Y). To establish the claim, we first observe that the non-empty relations
RYV form a partition of X x X and that (RYV)T = RY'V.

Now pick an arbitrary triple of relations RZUV, R;/W, R,(fw, with i € Z(U,V),j €
Z(V,W),h € Z(U,W). We have to show that the number

AW (u, ) == |RYY (u) N (RY™) T ()| = |Ri(u) N Rj(z) N V|

does not depend on the pair (u,z) € RYW.

If U =V then ¢ € Z, implying R;(u) NV = R;(u). Therefore )\%‘;{W(u,x) =
|Ri(u) N R;(z)| = pfj Analogously, )‘Z“h/w (u,z) = p?j itV =Ww.

Next, we consider the case that U # V and U = W. In this case h € Z, while
i,j € I. Consider the scheme (Y,RY), where Y = UUV. For u,z € U = W, we
have

(4.2) P (Y) = [RY () N (R)) " (2)] = |Ri(w) N R;(z) N Y.

Because 4,j € Z, the intersections R;(u) N U and R;(x) NU are empty. Therefore
Ri(u)NR;(z)NY = R;(u) N R;(x) NV, and hence /\%‘,fw(u, x) = p?j(U uv).
The last case is the one in which the fibres U, V, W are pairwise distinct. Then
i,j,h € T. Consider the scheme (Y,RY), where Y = UUV UW. As before, we
have (4.2) for u € U,z € W. Because i,j € Z, we obtain R;(u) Y C VUW and
R;(x)NY CUUV. This implies that R;(u) " R;(z)NY = R;(u) N R;(x)NV, and
therefore )\Z.ZW(u, x) = pfj(U uvuw).
Thus we proved that the relations in S form a coherent configuration, with
intersection numbers
v p?j fU=Vor V=W,
(43)  piyow =AW = pLUUV) MU #AVU=W;
Y p?j(UUVUW) U AV, VAEWW £U.

Finally, we shall show that the coherent configuration is uniform. By the above
one-to-one correspondence between uniform association schemes and uniform co-
herent configurations this proves the theorem. To show that the configuration is
uniform, we have to prove that )\IUJ»‘,{W = )\Zlhvlwl whenever the triples (U, V, W)
and (U’, V', W') have the same type.

For U =V (and, therefore, U’ = V'), orif V.= W, thisis clear. f U # V,U = W
and U’ # V/,U" = W', then i,j € Z,h € Z. In this case we have to show that
pl(UUV) =pl(U'UV’). To prove this, it is sufficient to show that pl (U U V) =
p?j (V. UW) holds for any triple (U, V, W) of pairwise distinct fibres. So, consider
a scheme (Y,RY), where Y = U UV UW. Because h € Z, RY = RY UR) UR}Y.
Pick an arbitrary pair (u,u’) € RY, that is, (u,u’) € Rj, and u,u’ € U. Because
i,7 € I, we have that

pl5(Y) = [Ri(u) N R;(u') N Y| = |Ri(u) N R;(u') N V| +|Ri(u) N R;(u') N W| =
|Ri(u) N R;(u') N (UUV)|+]|Ri(u) N R;(u') N (UUW)| = pl(UUV) +pl(UUW).
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The same argument with (z,z) € R} shows that pl};(WUV)+pf;(WUU) = pj(Y),
and hence p?j(U uv) = pfj(V U w).

Consider now the remaining case where the triples (U, V,W) and (U’, V', W’)
consist of pairwise distinct fibres. In this case i,5,h € Z and we have to show
that pli(U UV UW) = pli(U' UV'UW'). If w = 3, then there is nothing to
prove, so we may assume that w > 4. In this case it is sufficient to show that
Pl (UUV UW) =pls(VUW U Z) holds for each quadruple U, V, W, Z of pairwise
distinct fibres. The arguments for this are similar as in the previous case. Consider
the scheme (Y,RY), where Y = U UV UW U Z. Then it follows from considering
pairs (u,y) € RYY and (y,2) € R} Z that

PLUUVUW)+pl(UUVUZ)=pli(Y)=pL(VUZUW)+pli(VUZUU),
which finishes the proof. O

As an immediate consequence, we obtain important structural information about
dismantled schemes.

Corollary 4.4. Let (X,R) be a dismantlable association scheme with w fibres. If
2 <w <w and each of Y, Y' C X are expressible as a union of w' fibres, then the
dismantled schemes (Y,RY) and (Y',RY") have the same parameters (i.e., same
eigenmatrices P and Q and same intersection numbers and Krein parameters, with
appropriate orderings of their relations and idempotents).

Proof. Tt follows from Definition 3.2 that the parameters of the dismantled scheme
(Y,RY) depend only on w’ and the parameters a?j and not on the choice of Y
itself. (|
4.3. Q-Higman schemes. In the previous section, we have seen that uniformity of
a scheme is equivalent to dismantlability. In this section, we give a characterization
of uniform schemes in terms of the Krein parameters (through so-called Q-Higman
schemes) and study the idempotents of uniform schemes.

4.3.1. Krein parameters of Q-Higman schemes. With cometric Q-antipodal as-
sociation schemes in mind, we consider an imprimitive association scheme with
J={0,d}, J; ={j,d—j}forj=0,1,...0—1< % and J; = {j} for j = ¢,....d—¢
(for some £).

For such a scheme we consider the dual intersection matrix L} with entries
(LY)ij = qfij. First note that p; = 1 + qfij. If j <florj>d-—¥{ then from
E; o(E0+Ed) =in(E;) = %(1+qfij)(Ej +E¢_j), we find that EjoEy = %(qijEj‘i’
(1+ qéj)Ed_j), and hence that qjj_] =1+ quj, and qéj =0 for 1#£5,d—j.

For ¢ <j<d _.E’ we find from Ej o (Ey + Eq) = (1 + q;;)E; that ¢j; = 0 for
i # j, and hence quj = w — 1. In other words, the only nonzero entries of L, are on
the diagonal and the antidiagonal. _ _ _

For j < £ or j > d — /£, we may combine the facts qg;] = 1+¢) and q); +
qidfj =mg =w — 1 to find (1 + qzlj)md_j = (w —1- qgj)mj. This implies that
mq—; < (w—1)m; with equality if and only if qglj = 0. We thus obtain the following

Lemma 4.5. Consider an imprimitive association scheme with J = {0,d}, J; =
{j,d—j} forj=0,1,...0-1< % and J; = {j} forj={,...d—L. If0 < j < d—,
thenqéj =0 fori # j and p; :qéj+1 =w. Ifj <l orj>d—2{¥ then
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pj = qgj;j =1+ qéj and qzlj =0 fori # j,d— j, and moreover, mq_; < (w — 1)m;
with equality if and only if qij =0.

The case of equality is one of the motivations for the following definition.

Definition 4.6. An imprimitive association scheme is called Q-Higman if for some
£ such that 1 </ < g + 1 and for some ordering of the primitive idempotents, we
have that 7 = {0,d}, J; = {j,d—j} for j =0,1,....0—1, J; = {j} for j = ¢, ...,d—¢,
and q?j =0 (or equivalently mq_; = (w — 1)m;) for j =0,1,....,£ — 1.

It is important to note that this Q-Higman property is formulated entirely in terms
of the Krein parameters, in particular in terms of the dual intersection matrix L}.

Proposition 4.7. An association scheme is Q-Higman if and only if for some £
such that 1 < £ < ng 1, for some w, and some ordering of the idempotents it holds
that ¢y 4 ; =w—1 forj_< Lqhg j=1landgly=w-2forj>d—{ qgj=w-1
fort < j <d—{, and qg =0 for all other values of i and j. Moreover, if this is
the case, then pj =1ifj<t, pj=w if £ <j<d—L, and pj=w—14fj>d— L.

Proof. If the scheme is Q-Higman, then the stated properties follow from the above
considerations. On the other hand, suppose that these properties hold. Then it
follows that v(Eg+Eg4)o(Fo+Eg) = w(Eo+Ey) and that (Ey, Eq) is a o-subalgebra.
This means that the scheme is imprimitive with J = {0,d} and fibres of size .
The equivalence classes of ~* then easily follow, and so does the conclusion that
the scheme is Q-Higman. O

We note that the standard relations between the Krein parameters of a scheme
(e.g., see [7, Lemma 2.3.1]) give some more specific information on those of Q-
Higman schemes. It can for example be derived (from [7, Lemma 2.3.1] or directly
by working out the product E; o E;j o Eq in different ways) that if j < £ and ¢ is
arbitrary, then qlh’dfj = (w— l)qidj_h for h < ¢, qufj = (w-— l)qzhj for{ <h<d-—/,
and q{fd_j = qu*h + (w— 2)qu for h > d — ¢. It also follows that qu = qu*h for
all i, £ < j <d—/¢ and h < £. In the cometric Q-antipodal case, we include these
observations in Lemma 5.5 below.

4.3.2. The idempotents of uniform schemes. In this section we shall show one of
our main results, i.e., that Q-Higman schemes and uniform schemes are the same.
For this we will again use the correspondence to uniform coherent configurations.

We remind the reader that A = (A;]i = 0,...,d) is the Bose-Mesner algebra
of the association scheme under consideration, and that B = (A;|i € I) is the
Bose-Mesner subalgebra on the fibres. Moreover, we let

D= (A;|i ¢ T).

In order to show that a uniform scheme is Q-Higman, and to find relations with
its dismantled schemes, we study its idempotents. We start off with the case of
bipartite schemes, i.e., imprimitive schemes with two fibres.

Lemma 4.8. A bipartite scheme is Q-Higman. FEach primitive idempotent of B
that is not a primitive idempotent of A is of the form E + E', where E and E’ are
primitive idempotents of A, and E — E' € D.
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Proof. Consider a bipartite scheme with fibres U and V. Because all relations
Evyu  Eyv

R;,i ¢ T are bipartite, it follows that E =
Evy Evv

] is a primitive idem-
Eyv  —Euv
—Evy  Evyy
over, then F + E' is a primitive idempotent of the Bose-Mesner subalgebra B, and
E—F’ € D. This implies that the primitive idempotents of B that are not primitive
idempotents of A are of the form E+ E’, where E and E’ are primitive idempotents
of A, and E — E' € D. Thus, all sets J; have size at most two. Moreover, the
multiplicities of the idempotents E and E’ are equal, because trace(E) = trace(E’).
Thus, the scheme is Q-Higman. ([l

potent if and only if F/ = is a primitive idempotent. More-

Lemma 4.9. Consider a uniform association scheme. Let F' € B be a primitive
idempotent of B. Then F is a primitive idempotent of A if and only if FD = {0}.
Let Y be a union of at least two fibres. Then FY is a primitive idempotent of
BY . Moreover, FY is a primitive idempotent of AY if and only if F is a primitive
idempotent of A.

Proof. An idempotent F' of A is primitive if and only if F'A is proportional to F
for each A € A. Because F is a primitive idempotent of B, F'A is proportional to
F for each A € B. Therefore F is a primitive idempotent of A if and only if F'A is
proportional to F' for each A € D. So consider A € D. Because F is block-diagonal
and AY =0 for U € F, we obtain (FA)Y = 0. Therefore F'A is proportional to F'
if and only if FA = 0.

Because of the block-diagonal structure of B, F¥ is clearly a primitive idempo-
tent of BY |, and (FD)Y = FYDY. Because the linear map A — AY is a bijection
between A and AY, it follows that F'D = {0} if and only if F¥Y DY = {0}, hereby
proving the final statement of the lemma. O

Theorem 4.10. Consider a uniform association scheme. Let Fy,...,F, € B be a
complete set of primitive idempotents of B, ordered such that Fy, ..., Fy_1 are not
primitive in A, and Fy, ..., F, are primitive in A. Then for each j =0, ...,€—1 there
exists a matriz D; € D such that for each union'Y of w' > 2 fibres, the matrices
%(ij + DJY) and FjY — %(ij + D}/),j =0,...0 —1, and F}Y,..,FY are the
primitive idempotents of AY .

Proof. First of all it follows from Lemma 4.9 that the matrices FZY, o, FY are
primitive idempotents of AY. Secondly, we fix j € {0,...,£ — 1} for the moment,
and let F' := F;. We then claim that there is a matrix D € D, which is unique up

to sign, such that for any two distinct fibres U, V', we have

FUUDUV — DUVFVV:DUV
(4.4) pUVpVU = FUU
DVUDUV — FVV.

To prove this claim, we first fix two fibres U and V, let Z := UUV, and consider the
bipartite dismantled scheme on Z. By Lemma 4.9 we have that FZ is a primitive
idempotent of B which is not a primitive idempotent of A%. From Lemma 4.8 we
obtain that F4 = E + E’, where E and E’ are primitive idempotents of A% such
that £ — E' € D?. Because the map D — D? is a bijection between D and DZ,
there is a matrix D € D such that D? = E— E’. Because E and E’ are orthogonal,
this matrix D satisfies FZD? = D?F% = D? and (D?)? = FZ. It then follows
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that D satisfies (4.4) for the fixed fibres U and V. Now we use the fact that Sym(F)
acts doubly transitively on F: by applying algebraic automorphisms o € Sym(F)
to these equations, we find that they hold for all fibres U, V.

It remains to prove uniqueness of D. Let M € D be a matrix satisfying (4.4),
ie, FZM? = M?F? = M% and (M%)? = FZ. Because FZ = E + E’ and
E,E’ are primitive idempotents of A7, there exist four solutions of the equation
(M?)? = FZ with M? € A? namely +F 4 E’ (this easily follows by writing M?%
as a linear combination of primitive idempotents of A%). On the other hand, the
matrices +F%, +D? satisfy this equation. Therefore MZ = £D%. Again, because
the map D +— DZ is a bijection between D and DZ, we obtain that M = +D, and
the claim is proven.

The above considerations show the existence of D € D such that F'D = D and
D? = (w—1)F + (w—2)D for the case w = 2. Now let us assume that w > 3. Fix
three arbitrary but distinct fibres, say U, V, W, and consider the product DYV DVW
Because of uniformity this product belongs to AV" . Therefore there exists a G € D
such that GYW = DYV DVW 1t follows from (4.4) that FVUGUW = GUW FWW —
GUW GUWGEWU = FUU and GWYGYW = FWW_ From the above claim it then
follows that G = D, where € = 1. Thus DYV DVW = ¢DYW  and after replacing
D by eD this becomes DYV DVW = DUW _ Applying — as before — algebraic
automorphisms o € Sym(F) to this equality we obtain that DUV pV'wW' — pu'w’
for any triple of pairwise distinct fibres U’, V', W',

If Y is a union of w’ > 2 fibres, then a routine calculation shows that (DY)? =
(w' —1)FY + (w' —2)DY. After releasing the fixation of j by indexing F' and D,
we thus obtain that

(4.5) FY'DY =D} and (D) )? = (w' — )F) + (w' —2)D} .

For fixed Y, it remains to show that the matrices E; := %(ij + D;Y) and B :=
FjY - %(FJ.YJFD}/),]' =0,...,0—1,and F), ..., FY are the primitive idempotents of
AY . Tt follows from (4.5) that E;, B} are pairwise orthogonal idempotents. To show
that Fj, £ are orthogonal to Ep, B}, for h # j, and to FY for h > ¢, it is sufficient
to check that F ].YD}L/ = F ,}L/ D}/ = D}/D}l/ = 0. These equations hold because
FYDY = FYFYDY =0 and DY D} = FY DY FY D) = FY FY DY D} =0.

Thus we have 2 + e+ 1 — ¢ = e + 1 + £ pairwise orthogonal idempotents of AY .
It remains to show that d4+ 1 = e+ 1+ £. Because d, e, £ do not depend on w’ (for
w’ > 2; for £ this follows from Lemma 4.9), it is enough to check this equality for
w’ = 2. But in the case of w’ = 2 each primitive idempotent of B is either primitive
in A or splits into a sum of two primitive idempotents of A, as we saw in Lemma
4.8. This implies that d+ 1 =e+ 1+ £. O

Corollary 4.11. A uniform association scheme is Q-Higman.

Proof. Consider a uniform association scheme. Apply Theorem 4.10 with ¥ = X
and w’ = w to see that the sets J; have size at most two, i.e., its primitive idempo-
tents that are not primitive idempotents of B come in pairs £}, E; The correspond-
ing multiplicities satisfy m/ = trace(Ej) = “=Ltrace(F;) = (w — 1)trace(E;) =
(w — 1)m;, which concludes the proof. O

The next result also follows easily from Theorem 4.10.
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Corollary 4.12. Consider a uniform association scheme, with primitive idem-
potents E;,j = 0,...,d (ordered as in Definition 4.6), and let Y be a union of
g’ > 2 fibres. Then the primitive idempotents of the dismantled scheme on'Y are
;= %E]Y and Eq_; = E;:j + E]Y — %EJY, j=0,.,0—-1, and E; := E]Y,
j=4,..,d—¢.

To show the converse of Corollary 4.11, i.e., that a Q-Higman scheme is uniform,
we use the following lemma, whose proof is similar to the dismantlability proof of
a cometric Q-antipodal scheme in [35, Thm 4.7].

Lemma 4.13. Consider a Q-Higman scheme. Then for each fibre U,

w_lEj if h=jandj=0,..0—1,;
EjIV —w™'E; if h=d—jandj=0,..,0-1;
IYEy j—wlE;; if h=d—jand j=d—{+1,..,d;
EjIU—IUEd_j+IU_1Ed_j if hzj andj:d—f+1,...,d;
EjIU if h=jandj=4¢..,d—1{
0 otherwise.

E;IVE), =

Proof. Similar as in the proof of [35, Thm 4.7], it follows from [7, p61, Eq. 9] that
(4.6) | vE; IV By, — néjnEj ||*= q;-jhn2(w - 1.
To start with the bottom line of the expression for E;IV Ej,: if h »* j then h # j
and q?h = 0, and we obtain from (4.6) that E;IV E;, = 0.

If h=7 with j=0,....,£ — 1, then q?h =0and so E;IVE; = w™ ' E;.

Ifh=d—jwith j =0,..., — 1, then

E;IVEy_;=E;IV(I1- Y E)=EIY - E;IVE; = E;IV —w™'Ej.
i#d—j

For j=d—{¢+41,...,d, we have that 0 < d — j < £ — 1, hence from the above it
follows that Ed,jIUEj = Ed,jIU — w_lEd,j. By transposing this expression we
obtain that EjIUEd,j = IUEd,j — w_lEd,j.

Also for j =d — /¢ +1,...,d we have that
E;IVE; = E;1V(1 =) E))=Ej IV = E;IVE, ;= E;1" = I"Eq_j + w ' Eq4_;.

i#j

For j = ¢,...,d — ¢, the idempotent E; is block-diagonal, implying that E;IVE; =
E;1Y. O

Theorem 4.14. Consider a Q-Higman association scheme. Then
M:=(EYV|j=0,...d— L and U,V € F)
is a coherent algebra corresponding to a uniform coherent configuration.

Proof. We shall show that 9t is closed with respect to transposition, ordinary
matrix multiplication, and entrywise multiplication, and contains I and J, thus
proving it is a coherent algebra.
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First however, we claim that E]UV € Malso for j =d— ¢+ 1,...,d. Indeed, in
this case 0 < d—j <{¢—1and v 'E; = Ej0 E4_j. Therefore

—JUV o EYY. U £V
~1)JVVeEYY, U=V

B { —EYY. #U#V
(w-1EYY, U=V

pUv pUV o UV
i T VR4 -y = { (w
€ M.

Hence EJUV € M for each j,U, V. This implies that E; € 9 for each j, and hence
I,JeMm.

Concerning the closure properties, note that closure with respect to transposition
is evident. Closure with respect to matrix multiplication follows from Lemma 4.13,
because it implies that

(4.7) EYVEN? = §yw 6 ANE? € MM,

where A\ = w™! for i = 0,....,4 — 1 and A = Sz for i = ¢,...,d — ¢ (here § is the
Kronecker delta). Closure with respect to entrywise multiplication follows from

d
EYV o BV = (Ej o Bp)"Y =v'> ¢l EFV e M.
=0

It remains to show uniformity. Note that it is clear from the above that 90t
contains all the matrices AzUV; the nonzero matrices among these form a basis of
Schur idempotents for the corresponding coherent configuration. Because AYY can
be expressed as a linear combination of the EJUV,j =0,...,d — ¢, it follows from
(4.7) that the coherent configuration is uniform. O

Corollary 4.15. A Q-Higman scheme is uniform. Any dismantled scheme of such
a scheme is also Q-Higman.

Proof. The first statement follows from Theorem 4.14 and the correspondence be-
tween uniform coherent configurations and uniform schemes (Proposition 4.2). The
second statement follows from dismantlability (Proposition 3.3) and the converse
of the first part (Corollary 4.11). O

We thus have proven the following.

Theorem 4.16. An association scheme is uniform if and only if it is Q-Higman.

5. COMETRIC Q-ANTIPODAL SCHEMES

A cometric association scheme (with a Q-polynomial ordering Ey, F1, ..., E4) is
called Q-antipodal if it is imprimitive with J = {0,d}. It is called Q-bipartite if it
is imprimitive with 7 = {0, 2,4, ...}, or equivalently if af = 0 for all ¢, cf. [48].

It was shown by Suzuki [48] that an imprimitive cometric d-class association
scheme is Q-antipodal, Q-bipartite, or both, unless possibly when d = 4 or d = 6.
The exceptional case for d = 4 was later ruled out by Cerzo and Suzuki [17]. Here
we will consider the Q-antipodal case.
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5.1. Uniformity. Consider a cometric Q-antipodal association scheme. In this
case, it follows that the equivalence classes of the relation ~* are J; = {j,d—j},j =

0,1, ..., L%J So the primitive idempotents of the Bose-Mesner subalgebra B are

F;=FE;j+FEq_;,5< g, and F% = E% for d even. Note also that qgj =0forj < g,

hence a cometric Q-antipodal scheme is Q-Higman (with ¢ = [g}), and therefore
it is also uniform, and dismantlable. On the other hand, we will show now that a

uniform cometric scheme is Q-antipodal.

Theorem 5.1. A cometric association scheme is uniform if and only if it is Q-
antipodal.

Proof. One direction is clear from the above. Consider now a cometric scheme that
is uniform with imprimitivity system F. So the scheme is Q-Higman, and let us
assume that the idempotents are ordered as in Definition 4.6; in particular we have
J ={0,d}. In order to show that the scheme is cometric Q-antipodal, it suffices
to show that Fy is last in a Q-polynomial ordering too. In the case d = 3, however,
a somewhat degenerate case also arises where F,; is second in the Q-polynomial
ordering, but in this ordering F; is last and there is a second imprimitivity system
F' with subscheme corresponding to J' = {0,1}.

We first note that it is clear that E; cannot be a Q-polynomial generator, and
that this proves the case d = 2.

Next, consider the case d > 3. Then E; must take the last position in any Q-
polynomial ordering as F; o E4 € (E;, E4—;) eliminates positions from three up to
d — 1 (taking E; to be the Q-polynomial generator) and position two (taking i = d
and some Ej, j € {1,2,...,d — 1}, in position four).

For the case d = 3, we apply several properties of the Krein parameters from
Proposition 4.7. Consider a Q-polynomial ordering, and assume that Fs is not in
its last position. Because ¢3; = 0, this ordering cannot be Ey, Ey, E3, Eo, hence
it must be Eg, Fs, F3, F1. In this latter case, the scheme is cometric Q-bipartite,
hence g5; = 0 for all i. Because g3, = w — 2, it follows that ma = 3, ¢5; = w — 1,
which in turn shows that m; = 1. Thus {Ey, F1} induces another imprimitivity
system F’' with J' = {0,1}. Because E; is last in the Q-polynomial ordering
under consideration, this implies that also in this case the scheme is cometric Q-
antipodal. ([

An interesting consequence of Theorem 5.1 is that among the cometric association
schemes, the Q-antipodal ones can be recognized combinatorially.

The exceptional case in the above proof is realized only by the rectangular scheme
R(w,2),w > 2 (the direct product of two trivial schemes; on w and 2 vertices). Note
that this cometric Q-antipodal Q-bipartite scheme has one Q-polynomial ordering,
but two “uniform” imprimitivity systems; for one such system there is a uniform
ordering of the idempotents (as in Definition 4.6) that matches the Q-polynomial
ordering, for the other not. The proof of Theorem 5.1 thus implies the following.

Corollary 5.2. Consider a uniform d-class association scheme with J = {0,d}.
If the scheme is cometric then Eq is in the last position in any cometric ordering,
unless possibly when d = 3 and the scheme is isomorphic to the rectangular scheme
R(w,2),w > 2.
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We next obtain some (known) results for the parameters of cometric Q-antipodal
schemes. These are used, for example, to show that the dismantled schemes are
also cometric.

Lemma 5.3. A cometric Q-antipodal scheme has b; = Cqj for all j # Lg], a; =

ag_; forall j # %, %, and mgy—; = (w—1)m; forj < %. Moreover, for j = L%J,

it holds that b7 = (w — 1)cj_,.
Proof. From the fact that E; o F; € B, it follows that this matrix is a linear
combination of the F;. From the expressions of Iy o I; and E; o E4_; in terms of
Krein parameters and idempotents, we then find that b7 = cj_ j and aj =ay_ j for
all j # [2]. It follows from Lemma 4.5 that mq_; = (w — 1)m; for j < £.
For odd d, and j = 951, we have that b} = ":f;;lc;fﬂ = (w—1)¢j_;. For even d,
Mji4+1 %

and j = ¢, we have b; = i = (w—l)m%—;lb;ffl = (w=1)cj = (w—1)c;_;. O

Before we compute the Krein parameters of the subscheme, we determine the dual
intersection matrix L7 and the values of p;. These follow immediately from Propo-
sition 4.7.

Lemma 5.4. The Krein parameters of a cometric Q-antipodal scheme satisfy the
following properties:
(i) qu,d—j =w-—1 erj < %;
(ii) qé’d_j =1 and gj =w —2 forj > 4.
(iii) gy =0 for all other values of i and j.
Moreover, p; =1 if j < %, pa = w, and pj =w —1 ifj>%.

For convenient reference, we also collect here a few equations involving the remain-
ing Krein parameters that were obtained in Section 4.3.1 above.

Lemma 5.5. The Krein parameters of a cometric Q-antipodal scheme satisfy the
following properties: if 0 < j < % and 0 <t < d, then
(i) ¢fy_; = (w—1)gl " for h < ¢;
(ii) qu—j = qu*h + (w— 2)qu for h > g; and
(iii) ¢", = qj;h for all h when d is even.
2 12

11

5.2. Subschemes. Lemma 2.4 can now be used to show that the subschemes are
cometric.

Proposition 5.6. Let (X,R) be a cometric Q-antipodal association scheme with
w fibres, and Krein array {b§,b7,...,b5_1;¢i,¢5,...,c5}, where d > 3. Then the
subschemes induced on the fibres are cometric with Krein array

* 7k * Lk % *
{bo, 13 s d;1_1701702,...7cd;1}
for d odd, and Krein array
* 1k * Lox % *
{b5, 1,...,6%71,01,02,...,100%}

for d even.
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Proof. We use Lemma 2.4 with i/ =i=1and j'=j < % and h < g.

First, let h < % —1. Then we have that qu_ h — 0 because the scheme is cometric,
and hence (j{‘j =0if j<h-—1orj > h+ 1. Moreover, (j{l,,Fl = qf,kl = ¢}, and
c]fhﬂ = qfhﬂ = by . Similarly, it follows for h > % — 1 that (jfj =0ifj<h-1

For h = % — 1, we have qu,hfl = q{"h71 = ¢, and (jfhﬂ = %(qfh+1 + (w —
Day3ty) = 505 + (w = 1)ei_) = bj.

For h = £, we obtain that Ejfh_l = wqfh_1 = wc},, and finally, for h = 451, we
obtain that ¢}, _; = ¢} ,,_; = ¢j,. Thus, it follows that the scheme is cometric, and
the Krein array follows. O

Note that it follows from the proof that the Q-polynomial ordering of idempotents is
Fy, Fy, ..., F 4] The multiplicities m; = rank F} of a subscheme follow for example

e — 0 1.0 0 — . A ha = L
as follows: m; = ¢}; = ;(q}; +dq_;a_;) = m; for j # 5, and Mg = ;my.

5.3. Dismantled schemes. Proposition 5.6 is a well-known result. In [32, Thm.
4.7] it was shown that a cometric Q-antipodal scheme is dismantlable, with its
dismantled schemes being cometric Q-antipodal too. The proof of the latter is not
complete however, because incorrect idempotents are suggested there. The fact
that such a dismantled scheme is Q-Higman is clear from Corollary 4.15. That it
is cometric Q-antipodal can be shown as follows using Corollary 4.12.

Theorem 5.7. Let (X,R) be a cometric Q-antipodal association scheme with w
fibres, and Krein array {bg, b5, ...,b5_1;¢t,¢5, ..., ¢}, where d > 3, and let £ = f%]
Then the dismantled scheme induced on a union Y of w' > 2 fibres is cometric
Q-antipodal with Krein array {by, by, ..., by 1;C5,C5, ..., €5}, where

w
—% ok . —% *
¢; = forj#UL, andcszcg,

/

by =% forj£d—¢, and by_, = %Hbg_@ .
Proof. The stated result follows from working out the products E; o E; for all
J, where we use the expressions for E; in Corollary 4.12, and the expressions for
the dual intersection numbers b7, a}, and ¢ in Lemma 5.3. For most cases this is
rather straightforward; for readability we will therefore only give the details of one
of the more complicated cases, i.e., that of d even and j = £+ 1. In this case, with

v =w'n= %v being the number of vertices in Y, we have that

VE10Ep1 =vEY o(EYy, + 25 EY )
= EY +a; B} + ;B
+w;;/w(/ Z—QEI?/—Q + a}f—lE}/A + Czl?/?/)
= (b; + wJ/wCZ‘)Ef + aZJrl(EE}jrl + ww;’wEl}:l)
+CEJ¢2(E§;2 - El}/—Q)

w

_ow w —171x%x x 10 *x I
= wwoa i Betag  Eepn + ¢ oEie.
. T* /— —
Because ¢ = d — /¢, it thus follows that b,_, = %‘fy—_fl);%, ay,; = ayyq, and

Ciio = Cj,o- The other parameters follow similarly, and prove the statement. [
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Corollary 5.8. Let (X, R) be a cometric Q-antipodal d-class association scheme
with w > 3 fibres, with d odd and ¢ = %. Then aj # 0. Moreover, if Y is a union
of w' fibres, where w > w' > 2, then a,_, # 0.

Proof. If w > w' > 2, then @ = by — ¢} — b, = b, — 2¢; — b} < aj, and similarly

a;_y > aj;_y. The result follows from these inequalities. O

So, if d is odd, and the scheme is cometric Q-antipodal Q-bipartite, then w = 2.
Moreover, it cannot be a dismantled scheme of a cometric Q-antipodal scheme with
more fibres.

5.4. The natural ordering of relations. For a cometric scheme, we define the
natural ordering of relations as the one satisfying Qo1 > Q11 > -+ > Qqg1. Recall
that Q;;A; = vEj o A;. Because ), ., A; = n(Ey + Ey4) = I, ® J,, for Q-antipodal
schemes, it follows that in this case ;4 equals w — 1 if ¢ € Z, and —1 otherwise.

The orthogonal polynomials ¢;,7 = 0,1,...,d + 1 associated to the cometric
scheme have the property that Q;; = ¢;(Q:1),7 = 0,1,...,d and g44+1(Qs1) = 0.
Because the roots of ¢; and ¢;41 interlace (a standard and easily proven property
of orthogonal polynomials, cf. [18, Thm. 5.3]), it follows that the values of Q;4
alternate in sign. Thus for cometric Q-antipodal schemes it follows that

7=10,2,4,....}.

6. THREE-CLASS UNIFORM SCHEMES; LINKED SYSTEMS OF SYMMETRIC DESIGNS

Every two-class imprimitive association scheme is uniform and cometric. It has
one (nontrivial) relation within the fibres and one across the fibres (it is a wreath
product of two trivial schemes), and may thus be seen as a linked system of complete
designs. Likewise, an imprimitive three-class scheme with one relation across the
fibres is uniform (and decomposable), but such a scheme clearly cannot be cometric.

It is well-known that (homogeneous) linked systems of symmetric designs give
three-class association schemes, and in fact, these are uniform, almost by definition,
and cometric Q-antipodal (for information on such linked systems we refer to [20],
[35], and the references therein). In [20, Thm. 5.8] it was conversely shown (in
a different context though) that imprimitive indecomposable three-class schemes
with one extra condition on the multiplicities must come from such linked systems.
We can derive this easily now from the results in the previous sections.

Indeed, let us consider a three-class imprimitive association scheme that is in-
decomposable. Such a scheme must have two relations across the fibres and have
a trivial quotient scheme. Thus we may assume that J = {0,3}, J1 = {1, 2}, and
T = {0,2}. Moreover we may assume that mg > m;. It then follows that the
scheme is uniform (Q-Higman) if and only if ms = (w — 1)m; (which is the case if
and only if m; = n—1). It is clear (straight from the definition) that such a uniform
scheme corresponds to a linked system of symmetric designs. We thus obtain the
same result as in [20, Thm. 5.8]. The eigenmatrices of a three-class uniform scheme
can be written as

1 (w=1k n—-1 (w—1)(n—Fk)
pP— 1 P11 -1 —P11
B I ey PR | L Py
1 —k‘l n—1 —(n—k‘l)
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and
1 n—1 (w=1)(n—-1) w-1
Q= 1 Q11 —Qn -1
1 -1 —(w—1) w—1 |’
1 —nﬁlleu nﬁlleu -1

where k; is the block size of the symmetric designs in the corresponding linked
system. If we order the relations such that P;; > 0, then P11 = (w — 1)4/ %

and Q11 = \/w. We remark that Noda [38, Prop. 0] showed that %

is a square (integer) if w > 3.

Because the equality ms = (w — 1)m; is equivalent to ¢3; = 0, it follows that
such a uniform scheme is cometric except possibly when k; = 1 (note that ¢35, > 0
because 1 ~* 2; and ¢%; > 0 follows except when k; = 1; we omit the derivation).
In case k1 = 1 however, the scheme is decomposable: it is a rectangular scheme
R(w,n) (the direct product of two trivial schemes), which is cometric (and metric)
if and only if exactly one of w and n equals 2. We thus conclude the following.

Proposition 6.1. Consider an imprimitive three-class association scheme that is
indecomposable, and assume without loss of generality that J = {0,3}, T = {0, 2},
and mg > my. Then it is uniform if and only if mo = (w — 1)my. If so, then it is
cometric Q-antipodal and corresponds to a linked system of symmetric designs.

7. FOUR-CLASS COMETRIC Q-ANTIPODAL ASSOCIATION SCHEMES

We next consider the four-class schemes, comparing the “class I” imprimitive
schemes of Higman with the cometric Q-antipodal schemes.

7.1. A linked system of Van Lint-Schrijver partial geometries. Uniform
association schemes with three classes and more than one relation across fibres
thus turn out to be cometric. For four classes this is not the case. There are several
examples with just two fibres that are not cometric, such as those (non-cometric)
schemes generated by bipartite distance-regular graphs with diameter four. The
following example of a system of linked partial geometries by Cameron and Van
Lint [15] is perhaps more interesting because it has three fibres.

Example 7.1. Consider the ternary repetition code C of length 6. The vertices
of the association scheme are the 243 cosets of C' in GF(3)%, and these can be
partitioned into three fibres according to the sum of the coordinates of any vector
in the coset. Consider the graph where two cosets in different fibres are adjacent
if one can be obtained from the other by adding a vector of weight one. This
defines one of the two relations across fibres, and it generates the entire four-class
scheme. The incidence structure between two fibres is a partial geometry that is
isomorphic to the one constructed by Van Lint and Schrijver [34] (with parameters
pg(5+ 1,5+ 1,2)), which has as a point graph (and line graph) a strongly regular
graph with parameters (81,30,9,12); this gives the two (nontrivial) relations on
the fibres. The scheme is not cometric because g3 # 0.

7.2. Higman’s imprimitive four-class schemes. Higman [28] studied imprimi-
tive four-class association schemes, and classified these according to the dimensions
of the subalgebras B and C associated to a fixed imprimitivity system (or “para-
bolic”) as outlined in Section 2.3 above. Since we showed that B has dimension |Z|
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and C has dimension |J|, we may say that a four-class scheme falls into Higman’s
“class I” (relative to a given imprimitivity system) if it has |Z| = 3 and |J| = 2.
It is known that the cometric Q-antipodal four-class association schemes fall into
this “class I”. In the next section we shall characterize the cometric schemes in this
class.

Let us consider a “class I” scheme. Although Higman ordered relations and
idempotents differently, we will assume (without loss of generality) that J = {0,4}
and Z = {0,2,4}. Then, using Lemma 2.3, we may assume that J; = {1,3} and
Jo = {2}. So the subscheme on each fibre is a strongly regular graph, on n vertices
with valency k, say. Let r and s denote the nontrivial eigenvalues of this graph and
let f and g denote the multiplicities of r and s, respectively. The eigenmatrices P
and Q for this strongly regular graph are related to the eigenmatrices of this four-
class scheme by Equation (2.4). Using this, we claim (and Higman [28] obtained
the same) that the eigenmatrices for a “class I” scheme can be written as

1 (w=1k k (w—1)(n—k) n—-1-—k
1 P11 r —P11 —1-r
(7.1) P=11 0 s 0 —1—3s
1 _%Pll T %Pll —1—r
1 —kl k —(n—kl) n—1—k
and
1 m wg ms w—1
1 Qu 0 —Q11 -1
(72) Q= 1 B :LTWQ “’Tgs k:nTBT w_— 1,
e @n o @ 1
1 " (14+7r) ——5014+s) —TE(1+7r) w-1

where k; := 1+ pl, + pl, and the remaining unknowns are related by
my +m3 =wf, Piymy = Quivr, v1 = (w— 1)k;.

Indeed, for a given vertex x and a fibre U not containing x, k1 equals the number
of 1-neighbors of z in U. So the incidence structure between any two fibres induced
by relation R; is a square 1-design with block size k1. Thus the total number of
1-neighbors of = equals v; = (w — 1)k;. We also have Q12 = Q32 = 0 because
Jo = {2} forces Ey € B. The remaining simplifications in (7.1) and (7.2) can easily
be checked using the orthogonality relations @Q;; = Pji%j and (column zero of)
PQ=QP =vl.

It will benefit us to make the expressions (7.1) and (7.2) as unambiguous as
possible. Let us agree to order the idempotents £ and F3 by m; < mg. Unless
otherwise noted, we will order the relations Ry and R4 by assuming that r > 0,
and the relations R; and R3 by assuming P;; > 0. We now verify that, if such
a scheme is cometric, then Ey, Fy, E5, F3, B4 must be the Q-polynomial ordering,
except possibly when w = 2.

Since columns two and four of () have repeated entries, neither E5 nor F4 can be a
Q-polynomial generator. In fact, F4 must take the last position in any Q-polynomial
ordering by the same argument as that in the proof of Theorem 5.1. Finally, Fs
cannot take position three because g5 > 0 follows from 1 ~* 3. The last two possi-
bilities for our Q-polynomial ordering are Ey, F1, Es, E3, B4 and Ey, E3, Es, Eq, Ey.
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But ¢35 = 0 then gives m; = (w — 1)mj3 in the second case (by Lemma 4.5) and,
with our conventions above, this can only happen if w = 2. In fact, when w = 2,
we find that either one of these orderings — or both of them — can be Q-polynomial
orderings. But in the case where F3 is the Q-polynomial generator, the natural
ordering of relations described in Section 5.4 is instead Ry, R3, Ro, R1, Ry4.

From the 13-entry of the equation PQ = vI and the 11-entry from the similar
equation for the subscheme, we find that

p \/mg(w — Dki(n— k1)

my f

By using the expression [5, Thm. I1.3.6(i)]

m;m; Py Py Py
(7.3) D A

and the similar expression
~ f2 7“3 1+7r 3
= (g
n n

for the subscheme we then derive that

1 _ mims -1 ms (n— 2]@’1)\/?
13 wf? d11 (= k1)

which, of course, must vanish when the scheme is cometric with respect to the
Ordering Eo, El, E27 E3, E4.

7.3. Linked systems of strongly regular designs. Let us proceed with the
expressions of the previous section. From Lemma 4.5, we know that ¢i, = 0 if
and only if m3 = my(w — 1). By Definition 4.6 and Theorem 4.16, this happens
if and only if the scheme is uniform. In this case, the incidence structure between
two fibres is a so-called strongly regular design as defined by Higman [27], and the
scheme corresponds to a linked system of strongly regular designs. Cameron and
Van Lint [15] constructed such an example, as we saw, and also the example in
Section 1.1 is a linked system of strongly regular designs.

Proposition 7.2. An imprimitive four-class association scheme of Higman’s “class
I” is cometric (and therefore Q-antipodal) if and only if r # k, mg = (w — 1)my,
and

(7.4) G = (”%1 (ikl_)g

possibly after reordering the idempotents E1 and Es and the relations Ry and Rg3
in the case w = 2.

Proof. We address the case w > 3. The same ideas work in the case where w = 2,
but an extra case argument is involved.

First recall that a cometric Q-antipodal scheme is uniform and we have just
shown that uniformity, the vanishing of ¢i,, and the equation ms = (w — 1)m; are
all equivalent.
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We know from above that the scheme is cometric if and only if Ey, E1, Eo, E3, Ey
is a Q-polynomial ordering. So we need
a11=0, qi3=0, a;; >0, ¢/»>0, gj3>0.
2
Observing that ¢f; = %71 and gf5 = "534 47, and that ¢f; = 0 if and only if the
strongly regular graphs on the fibres are imprimitive with r = k, one easily works
out the remaining implications in both directions. (I

Thus, for a cometric Q-antipodal four-class association scheme, all parameters can
be expressed in terms of the number of fibres, w, and the parameters of the strongly
regular graph.

Corollary 7.3. If (X,R) is a cometric Q-antipodal four-class association scheme
with w fibres, then there exists a strongly reqular graph with n = v/w wvertices,
etgenvalues k, r, and s having multiplicities 1, f, and g respectively, such that the
eigenmatrices for (X,R) are given by Equations (7.1) and (7.2) where m; = f,
m3 = (w - ]-)f:

Py = (w—1)vVki(n—Fk)/f, Qu =/ f(n—k1)/ki,

and

~1
n 411
(7.5) bh=-1-—m——— ).
2 VAf+ (@1,)?
Proof. The expression for ky follows from (7.4). O

Moreover, because Gi, is always a rational number (even in the case when some

entry of P is irrational), we obtain that \/ki(n — k1)/f € Q for a cometric Q-
antipodal scheme with four classes, unless perhaps when n = 2k; (equivalently,
Gi; = 0). On the other hand (w — 1)y/k1(n — k1)/f = P11 is an algebraic integer.
Therefore P;; is a rational integer if n # 2k;. Because a Q-antipodal cometric
scheme is dismantlable, we can take w = 2 and consider P;; for the dismantled
scheme; now we see that ki(n — k1)/f is a perfect square provided n # 2k;.

It also follows from (7.5) that if Gi; # 0, then 4f + (Gi,)? is a square of a rational
number. This immediately implies the following result, which we will use in Section
7.5.

Proposition 7.4. For a cometric Q-antipodal four-class association scheme, the
strongly reqular graph on a fibre cannot be a conference graph.

Proof. Assume the contrary. Then n =2k +1, f =k > 0, Gi, = (k—2)/2, k is
even, and
i k—2\°
Af +(q1y)* = 4k + (2> :
Because n is odd, G}, # 0. Therefore k? + 12k + 4 is the square of an integer. But
k = —12,0 are the only even integers for which the expression k2 + 12k + 4 is a
perfect square. O

The rationality condition that follows from (7.5) turns out to be quite a strong one.
It is possible to show, for example, that also the lattice graphs cannot occur as
our strongly regular graph on the fibres, and probably many more graphs can be
excluded in this way. We will employ this condition as well in the next section.
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7.4. Four-class cometric Q-antipodal Q-bipartite association schemes;
linked systems of Hadamard symmetric nets. Recently, four-class cometric
Q-antipodal Q-bipartite association schemes were shown to be equivalent to so-
called real mutually unbiased bases, and a connection to Hadamard matrices was
found in [33]. We also refer to [1] for connections between real mutually unbiased
bases and association schemes. Here we shall derive the connection to Hadamard
matrices, and see cometric Q-antipodal Q-bipartite four-class schemes as linked
systems of Hadamard symmetric nets.

So, let us consider a cometric Q-antipodal Q-bipartite four-class association
scheme, and its eigenmatrix @ in (7.2) with mg = (w — 1)m; = (w — 1)f and
Q11 = v/ f(n —k1)/ky from Corollary 7.3. Since the scheme is cometric Q-bipartite,
the column of @ corresponding to a Q-polynomial generator has its d + 1 distinct
values symmetric about zero when ordered naturally [35, Cor. 4.2]. In our case,
this is either column one or column three, and in both cases it follows that r = 0,
n =k+2, and n = 2k;. This implies that s = -2, f = 7, and the strongly regular
graphs on the fibres are cocktail party graphs (complements of matchings). Now re-
strict to any dismantled scheme on w’ = 2 fibres; straightforward calculations show
that this must correspond to a so-called Hadamard graph, an antipodal bipartite
distance-regular graph of diameter four, cf. [7, p19, 425]. Such graphs correspond to
Hadamard matrices; more precisely, the incidence structure between a pair of fibres
is a Hadamard symmetric net (that is, a symmetric (m, u)-net with m = 2). We
thus obtain that cometric Q-antipodal Q-bipartite four-class association schemes
are linked systems of Hadamard symmetric nets. Interesting examples of these are
given by the extended Q-bipartite doubles of the Cameron-Seidel schemes (linked
systems of symmetric designs) [16]. These have n = 22**1 and w = 22~ 41 (which
is extremal) for k > 2. For more details and constructions, the correspondence to
real mutually unbiased bases, and bounds on w, we refer to [33].

On the other hand, we can characterize the cometric Q-antipodal Q-bipartite
four-class association schemes as follows.

Proposition 7.5. Consider a cometric Q-antipodal four-class association scheme,
such that the strongly reqular graph on a fibre is imprimitive. Then it is QQ-bipartite.

Proof. By Proposition 7.2, we have r # k. So r = 0, and the strongly regular graph
on a fibre must be a complete multipartite graph, say a t-partite graph with parts
of size % each. For such a graph s = —%, f =n—t, and G, =n—2t. So, if Ggi; #0
(which is equivalent to s # —2), then ¢ < %, and 4f + (¢1,)? is square (as before by
(7.5)). However, for t < 2, we have (n—2t+2)?+4t—4 = 4f+(q{,)* < (n—2t+4)?,
so 4f + (gf;)? cannot be square. Thus, ¢j; = 0 and ¢ = 2, so the strongly regular
graph on a fibre is a cocktail party graph, and therefore n = k 4+ 2 and n = 2k;.
From the expression for the eigenmatrix P in (7.1) and Equation (7.3), one can
now derive that the Krein parameters a} = ¢!, are zero for all i. Thus the scheme
is Q-bipartite. Note that, in this case, not only is column one, but also is column

three of Q symmetric about zero. O

The same result may be derived by using the fact that there are two different
imprimitivity systems and Suzuki’s results on imprimitive cometric schemes [48] and
cometric schemes with multiple Q-polynomial orderings [49]. It would be interesting
to work this out more generally, that is, for any cometric scheme with multiple
imprimitivity systems, but we leave this to the interested reader.
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7.5. Strongly regular graphs with a strongly regular decomposition. One
of the interesting features of the example in Section 1.1 is that there is a decomposi-
tion of the Higman-Sims graph into two Hoffman-Singleton graphs; thus a strongly
regular graph decomposes into two strongly regular graphs. Such strongly regular
graphs with a strongly regular decomposition were studied by Haemers and Hig-
man [25] and Noda [39], and they occur in more examples of four-class cometric
Q-antipodal association schemes, as we shall see.

Let Ty = (X, E) be a primitive strongly regular graph with adjacency matrix
M, parameter set (v, ko, Ao, 110), and distinct eigenvalues kg > ro > s9. A strongly
regular decomposition of I'y is a partition of X into two sets U; and Uy such that
the induced subgraphs I'; :=I'y,, ¢ = 1, 2 are strongly regular.

For our purpose, the sets U; and U, will play the role of the w = 2 fibres of an
imprimitive (bipartite) association scheme, and the disjoint union of the graphs I'y
and T’ is one of the two relations in Z. Thus we will only consider the case that
the sets Uy and Us are of equal size, and the parameter sets of I'y and I's are the
same, say (n,k, A, ). The eigenvalues of both graphs will be denoted by k > r > s.

To make the connection between a strongly regular graph with a strongly regular
decomposition and our four-class association schemes more precise, write M =

M, C

cT M,
relations by the following adjacency matrices:

I 0 0o C M, 0
Aoz[o I]’ Al:[CT 0]’ A2:{ 0 Mz]’

_ 0o J-C [ J-M—1 0
A?"_{J—C’T 0 ] A‘*"[ 0 JMQI]'

, where the blocks correspond to our partition of X. We then define

(7.6)

We shall determine when these relations form an association scheme, and if they
do, we shall see that the scheme is cometric Q-antipodal. But first we make some
more observations.

By taking the complements of I';, ¢ = 0, 1,2, we obtain another strongly regu-
lar graph with a strongly regular decomposition; we call this the complementary
decomposition. Note that this complementary decomposition determines the same
relations, i.e., the same A;, i = 0,...,4, but ordered differently. In case that these
relations form an association scheme, it is not clear a priori which ordering corre-
sponds to the one in the eigenmatrix P in (7.1). The straightforward choice that
we make is that we consider that decomposition for which the eigenvalues k,r, s of
I';,i = 1,2 correspond to the k,r, s in the eigenmatrix P (however, in the case of
hemisystems in the next section we make an exception).

A strongly regular decomposition is called exceptional if rog # r and so # s.
It was shown by Haemers and Higman [25, Thm. 2.7] (and it also follows from
[39, Thm. 1]) that in this exceptional case the graphs I'y and T's are conference
graphs. Thus, Proposition 7.4 implies that such an exceptional decomposition does
not correspond to a cometric scheme. An example of an exceptional decomposition
is that of the Petersen graph into two pentagons.

Note that when the relations defined by (7.6) do form an association scheme,
then it has a fusion scheme {Ag, A1 + Ag, A3 + A4}. In that case it follows from
the expression (7.1) for the eigenmatrix P that the strongly regular graph I’y with
adjacency matrix M = A; + A, has an eigenvalue 0 + s, hence sg = s, and the
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decomposition is not exceptional. Note that in (7.1) the roles of A; and A3 may
be swapped, but this has no influence on the observation. Thus, in the case of an
exceptional decomposition, (7.6) does not yield an association scheme.

We shall now show that if the relations defined by (7.6) form a scheme, then
this scheme is cometric Q-antipodal. This follows from the following proposition,
where we consider Higman’s “class I” schemes with two fibres, i.e., w = 2; since
the scheme is bipartite, it is Q-Higman and Lemma 4.5 applies, giving us m4 = 1,
my = m3 = f and qj, ; = 1. Thus, ¢j; = ¢33 = 0, and the conditions from
Proposition 7.2 for the scheme to be cometric reduce to r # k and ¢3; = 0 or
Q§3 =0.

Proposition 7.6. Consider an imprimitive four-class association scheme in Hig-
man’s “class I” with two fibres. Suppose that the scheme has a primitive two-class
fusion scheme, and that r # k. Then the scheme is cometric Q-antipodal.

Proof. From the form of the eigenmatrix P in (7.1) it follows that the only way to
obtain a primitive two-class fusion (i.e., one where both nontrivial relations corre-
spond to connected strongly regular graphs) is to fuse relation R; with either Rs
or R4, and to fuse the remaining two nontrivial relations. But then there exists a
corresponding partition {77, 75} of {1,2,3,4} such that Ey, Er, := EjeTl E; and
Ep, =3 jeTs E; are the primitive idempotents of the fusion scheme. Depending
on the fusion of relations, one of the fused relations has eigenvalue +P;; + r corre-
sponding to idempotent E7, and eigenvalue FP;; 4+ r corresponding to idempotent
E3, these two eigenvalues differing by 2P;; in either case. In any case it follows
that 1 and 3 are not in the same set T;.

Now assume first that one of Ty,7T5 is a one-element set, say T3 = {i}. From
the above it follows that ¢ # 2,4. If i = 1, then F; o E; is a linear combination of
FEo,E1,Es + E3 + E4. But ¢f; = 0. Therefore E; o By € (Ey, E1) implying that
the fusion is imprimitive, which is a contradiction. The case i = 3 can be settled
analogously.

Thus |T1| = |T2| = 2. Without loss of generality Ty = {i,4} for i =1, or i = 3
(the case i = 2 is eliminated by the above considerations). Assume without loss of
generality that ¢ = 1; then

v(Ey + Ey) o (BEy + Ey) = (m1 + 1)Eg + 2(Ey + Ey) + y(E2 + E3)

for some non-negative reals x,y. Because ¢f; = 0, ¢4 = 0, and ¢}, = 0 (by
Proposition 4.7 and using w = 2), E4 does not appear in the left-hand side. There-
fore x = 0, implying Eq o Fy € (Ey, Fa, E3). Together with F5 o0 F3 = Ej o By
(which follows from the equations vE, o Ey = Ey and vE3 o E4 = Ep) we obtain
E3 0 E3 € (Ey, Ea, F3). So ¢33 = 0, which yields the claim. O

What remains is to show that a decomposition that is not exceptional gives an
association scheme. This gives the following result.

Proposition 7.7. Consider a strongly reqular graph with a strongly regular decom-
position into parts with the same parameters. Then the above-mentioned relations
form an association scheme if and only if the decomposition is not exceptional. If
so, then for r # k, the scheme is cometric Q-antipodal.

Proof. We showed before that an exceptional decomposition does not correspond
to an association scheme. So suppose that the decomposition is not exceptional.



32 EDWIN R. VAN DAM, WILLIAM J. MARTIN, AND MIKHAIL MUZYCHUK

From the parameters of the strongly regular graphs it follows that

M? = (’I“Q + So)M —roSol + (k‘o + Toso)J, MJ = ko,

M? = (r+s)M; —rsI + (k +7rs)J, and M;J=kJ, i=1,2.
By working out the first equation, it follows that
CJ = (ko —k)J, CTJ = (ko —k)J,

MC + CMs = (ro + s0)C + (ko + r080)J,
CCT = (ro+sg—1—8)M; — (roso — rs) + (ko + roso — k —75)J,
CTC = ('I’(] + Sg— T — S)MQ — (7‘(]8(] — 'I’S)I + (]i}() + roSo — k — TS)J,
and this implies that (rg + so — 7 — s)(M1C — CMs) = 0. If 1o + 59 = r + s,
then it follows from a result of Noda [39, Thm. 1] that the decomposition is
exceptional, hence we must have that M;C = CMs. From (7.7) it then follows that
M,C =CM, = ”’JQFS" C+ kﬁ;"’s" J. Now a routine check shows that the matrices

A;yi = 0,...,4 form an association scheme, and by Proposition 7.6 this scheme is
cometric Q-antipodal. O

(7.7)

For the non-exceptional case, Noda [39] found that all parameters of the decomposi-
tion can be expressed in terms of ry and sg. In our case, we have that s = sg, which
is the complementary case to the one considered in [39, Thm. 1]. From this result,
it follows for example that r = w Note that this also follows by considering the
eigenvalues of the fusion scheme using (7.1): indeed, we have sg = 0+s = —Pj1+7,
and To :P11 +r.

Haemers and Higman [25] give a list of parameter sets of non-exceptional de-
compositions on at most 300 vertices. The smallest example is the Clebsch graph
that decomposes into two perfect matchings on 8 vertices. The association scheme
corresponding to this decomposition (consider the complementary one for the pa-
rameters) is the four-class binary Hamming scheme H(4,2) (which is (co-)metric,
(Q-)bipartite, (Q-)antipodal). Note that this is a dismantled scheme of the cometric
Q-bipartite Q-antipodal scheme (with w = 3) related to the so-called 24-cell. The
next example is the Higman-Sims graph decomposing into two Hoffman-Singleton
graphs, and there are two more examples: on 112 vertices and 162 vertices. The
one on 112 vertices is a decomposition of a generalized quadrangle into two Gewirtz
graphs, and it is part of an infinite family of decompositions coming from hemisys-
tems.

7.5.1. Hemisystems of generalized quadrangles. Segre [43] introduced the concept
of hemisystems on the Hermitian surface H in PG(3,¢?) as a set of lines of H such
that every point in H lies on exactly (¢+1)/2 such lines. This point-line geometry,
denoted H(3,¢?), gives an important classical family of generalized quadrangles,
called the Hermitian generalized quadrangles. It is now well-known [11] that the
incidence relation on lines in this hemisystem yields a strongly regular subgraph of
the line graph of the geometry. Thus we obtain a strongly regular decomposition of
the (strongly regular) line graph of this generalized quadrangle. In fact, this holds
for any hemisystem in a generalized quadrangle GQ(t?, ).

Let (P,L) be the point-line incidence structure of a generalized quadrangle
GQ(t?,t) with t odd. Let 'y be the line graph: its vertex set is X = £ with
two vertices adjacent if the lines have a point in common. This is a strongly regular
graph with parameters ((#3+1)(¢ +1),t(t> + 1), t —1,¢> + 1) and with eigenvalues
ko =t(t?>+1), 70 =t —1, and sp = —1 — 2. A hemisystem in (P, L) is a subset
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Uy C £ with the property that every point in P lies on exactly (¢+ 1)/2 lines in Uy
and (¢t 4+ 1)/2 lines in Uy = X — U;. Cameron, Delsarte, and Goethals [11] showed
that any hemisystem in a generalized quadrangle of order (#2,t) corresponds to a
strongly regular decomposition of the line graph of the corresponding generalized
quadrangle. Because the complementary set Us of lines of a hemisystem is also a
hemisystem, this decomposition X = U; U U, has equally sized parts. Moreover,
the parameters of the parts are the same: each U; induces a subgraph I'; which is
strongly regular with parameters

(n, k, A\, ) = <;(t3 +1)(t+1), %(t2 +1)(t—1), %(t - 3), %(t — 1)2>

and eigenvalues k = 1(t* +1)(t — 1), r =t — 1, and s = —%(t> — ¢ +2). The
decomposition is clearly not exceptional (note though that here we have the com-
plementary setting as in the previous section because r = ), so by Proposition
7.7, we have

Corollary 7.8. Let (P, L) be a generalized quadrangle GQ(t2,t) with t odd and let
C denote the set of all ordered pairs of distinct intersecting lines from L. Suppose
L = U; UU;y is a partition of the lines into hemisystems. Then the relations
Ry = {(Z,f)M S E}, Ri=Cn (Ul x Uy U Uy X Ul), Rs :Cﬂ(Ul x U; UU; x Ug),
R3:(U1 XUQUUQ XUl)—Ro—R1, R4=(U1 XU1UU2 XUQ)—RQ—RQ give a
cometric Q-antipodal association scheme on X = L. This scheme has Krein array
{@+1)E-1),F —t+1)?/t, —t+1)(E—-1)/t,1; 1, (2 —t+1)(t—1)/t, (t* -
t+1)2/t, (BB +1)(t—1)}.

Segre [43] constructed a hemisystem in H(3,¢?) (a GQ(q?, q)) for ¢ = 3; it cor-
responds to the above-mentioned example on 112 vertices with a decomposition
into Gewirtz graphs. A breakthrough was made by Cossidente and Penttila [19],
who constructed hemisystems in H(3,q?) for all odd prime powers q. Bamberg,
De Clerck, and Durante [3] constructed a hemisystem for a nonclassical general-
ized quadrangle of order (25,5) (which has the same parameters as H(3,25)), and
recently Bamberg, Giudici, and Royle [4] showed that every flock generalized quad-
rangle has a hemisystem. Currently, all known generalized quadrangles of order
(t2,t) are flock generalized quadrangles.

7.6. Classification, parameter sets, and examples. We saw in Section 7.3
that the parameters of a four-class cometric Q-antipodal scheme are completely
determined by those of the strongly regular graph on the fibres, together with
the number of fibres w. We used this to generate “feasible” parameter sets for
four-class cometric Q-antipodal schemes that are not Q-bipartite, and that have
n < 2000 and w < 6. These parameter sets are listed in the appendix. Standard
conditions such as integrality of parameters p?j and nonnegativity of the Krein
parameters qihj were checked. Once a parameter set failed, we did not search for the
corresponding parameter set with larger w (because dismantlability would exclude
such a parameter set). We also checked one of the so-called absolute bounds on
multiplicities, i.e., the one in Proposition 7.9 in the next section.

7.6.1. Absolute bound on the number of fibres. By the absolute bound we obtain
the following bound for w.
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Proposition 7.9. For a four-class cometric Q-antipodal scheme, we have w <
(f+1)(f —2)/29.
Proof. By the absolute bound (cf. [7, Thm. 2.3.3]) we have

f(f+1)/2 > rank(E; o E7) = rank(Fy) + rank(E;) + rank(Es) = 1 + f + wg,
and the result follows. O

For example, for the parameter sets with n = 81 in the appendix, we obtain that
w < 3 from f =20 and g = 60. In general, the bound does not appear to be very
good though.

7.6.2. The small examples. The first family of parameter sets in the appendix (n =
50) corresponds to the examples (with w = 2 and w = 3) related to the Hoffman-
Singleton graph in Section 1.1. The case w = 2 corresponds to a distance-regular
graph that is uniquely determined by the parameters, cf. [7, p393]. Now consider
more generally an association scheme with w fibres V;,7 = 1,...,w (in this family
of parameter sets). Because also the Hoffman-Singleton graph is determined by its
parameters, relation R, is such a graph on each fibre. Let us call two vertices in
distinct fibres incident if they are related by relation R;. Because pl, = 0 for all w,
it follows that if we take a vertex x € V;,4 > 1, then the 15 vertices in V; incident
to x will form a coclique in the Hoffman-Singleton graph on V;. Because distinct z
are incident to distinct cocliques, and there are exactly 100 distinct cocliques of size
15 in the Hoffman-Singleton graph, it follows that w < 3. Moreover, because the
scheme with w = 2 is uniquely determined by its parameters, and is a dismantled
scheme of a scheme with w = 3, this implies that the latter scheme is also uniquely
determined by its parameters.

For the second family of parameter sets in the appendix (n = 56) a construction
is known for w = 3. Higman [28, Ex. 3] for example mentions it can be constructed
on the set of ovals in the projective plane of order 4. The fibres are the three
orbits of ovals under the action of the group L3(4). The case w = 2 corresponds
to a hemisystem of the generalized quadrangle of order (9,3), or equivalently, to
a strongly regular decomposition of the point graph of GQ(3,9) into two Gewirtz
graphs. It is known that such a decomposition, and hence the corresponding scheme,
is unique (the uniqueness of the hemisystem in the generalized quadrangle is proven
by Hirschfeld [31, Thm. 19.3.18], and the uniqueness of the point graph as a strongly
regular graph was proven by Cameron, Goethals, and Seidel [13]). As in the first
family of parameter sets, we can show here that w < 3, and that the scheme with
w = 3 is unique. In this case, the intersection number p}, equals one (for all w),
which implies that the set of 20 neighbors in V; of any vertex = ¢ V; must be an
induced matching 10K in the Gewirtz graph induced on V;. Brouwer and Haemers
[8, p405] mention that there are exactly 112 such induced subgraphs in the Gewirtz
graph, which implies that w < 3 as well as the uniqueness of the scheme with w = 3.

The case n = 64 has w < 2. Dismantlability implies that the schemes with
n = 64 and w > 2 do not exist (a scheme with w = 3 does not occur because
for example the intersection number pi; = 4.5 is not integer). The case w = 2
corresponds to the distance-regular folded 8-cube, which is uniquely determined by
its parameters.

For the family of parameter sets with n = 81, the absolute bound implies that
w < 3. Goethals and Seidel [23, p156] give a decomposition of the strongly regular
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graph on 243 vertices from the ternary Golay code (also known as Delsarte graph)
into three strongly regular graphs on 81 vertices. This gives a scheme with w = 3
and n = 81. According to Brouwer [6], the decomposition of the unique strongly
56-regular graph on 162 vertices into two strongly regular graphs on 81 vertices is
unique, hence the association scheme with w = 2 is unique as well. We also expect
the scheme with w = 3 to be unique.

Besides the above examples, and the examples related to triality or hemisystems,
there occurs one more family of examples in the appendix. These are related to the
Leech lattice, cf. [28, Ex. 4], and have n = 1408 and w < 3.

Curiously, the Krein array {176,135,24,1;1,24,135,176} is formally dual to
the intersection array of a known graph, a cometric antipodal distance-regular
double cover on 1344 vertices found by Meixner [37]. Likewise, the Krein array
{56,45,16,1;1,8,45,56} is formally dual to the intersection array of an antipodal
distance-regular triple cover found by Soicher [44] which is not cometric.

8. FIVE-CLASS COMETRIC Q-ANTIPODAL ASSOCIATION SCHEMES

In [29], Higman introduced so-called strongly regular designs of the second kind
and showed that these are equivalent to coherent configurations of type [3 3; 3]. In
case the two fibres have the same size, these designs thus give five-class uniform
schemes.

A trivial way to obtain such schemes is by taking the bipartite double of a
strongly regular graph (Higman calls the corresponding strongly regular design
of the second kind trivial). Though trivial, there are some cometric (and also
metric) schemes obtained in this way, such as the ones obtained from the Clebsch
graph, Schlafli graph, Higman-Sims graph, the McLaughlin graph and both its
subconstituents. These strongly regular graphs have in common that ¢i; = 0 and
¢35 # 0. It was in fact claimed by Bannai and Ito [5, p314] that the bipartite double
of a scheme is cometric if and only if the (original) scheme is cometric with ¢i, = 0
for i # d and ¢, # 0.

To obtain less trivial examples of cometric schemes, we checked the examples
and table of parameter sets for nontrivial strongly regular designs of the second
kind in [29]. Four parameter sets in the table there turn out to give cometric
schemes. One with n = 162 (Higman’s Example 4.4) is related to Uy(3), and
has Krein array {21,20,9,3,1;1,3,9,20,21}. The second one (Higman’s Example
4.5) has n = 176, and can be described using the Steiner 3-design on 22 points.
It has Krein array {21,19.36,11,2.64,1;1,2.64,11,19.36,21}. The parameter set
with n = 243 can be realized as a dismantled scheme on two of the three fibres of
a cometric scheme that is the dual of a metric scheme corresponding to the coset
graph of the shortened extended ternary Golay code (cf. [7, p365]). Its Krein array
is {22,20,13.5,2,1;1,2,13.5,20,22}. The last cometric example from the table has
n = 256 (second such parameter set in Higman’s table) and corresponds to the
distance-regular folded 10-cube.

Higman also mentions (in his Example 4.3) the strongly regular designs of the
second kind related to the family of bipartite cometric distance-regular dual polar
graphs D5(q). We did not bother to completely check all other examples mentioned
by Higman [29], but we expect no other cometric examples among these.
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9. MISCELLANEOUS

In his book on permutation groups, Cameron [10, p79] describes how to use
the computer package GAP to construct the strongly regular decomposition of the
Higman-Sims graph into two Hoffman-Singleton graphs. This description can easily
be extended to get the linked system of partial A-geometries of Section 1.1.

We checked whether any of the remaining examples mentioned in Higman’s un-
published paper on uniform schemes [30] gives rise to a cometric scheme. Although
we should mention that one of the examples (Example 6) is unclear to us, we found
no cometric schemes among these examples.

Many of the examples mentioned in this paper, and also examples of other comet-
ric association schemes, are listed on the website http://users.wpi.edu/~martin/
RESEARCH/QPOL/. Included there are all parameters of the examples.
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APPENDIX

Below are putative parameter sets of four-class cometric Q-antipodal association
schemes with fibre size n < 2000 and w < 6, and that are not Q-bipartite. The
parameter sets are grouped according to the parameters of the strongly regular
graph which would appear as the subscheme on the fibres. These “srg” parameters
are given at the beginning of each group. For each group of parameter sets, we give
the absolute bound of Proposition 7.9 (if relevant).

Each remaining line contains information on one parameter set. An exclamation
mark (!) means that the scheme is unique, a plus sign (+) indicates existence, and
a minus sign (-) non-existence. Next to this, the Krein array is given, then w, the
partition v = 1 + v + vy + v3 + v4, and the spectrum of R;. At the end, some
miscellaneous information is given. The notation (P) indicates that the scheme is
(or, would be) also metric. The examples listed here appear in the body of the
paper as follows.

e Hoff-Singleton — the linked system of partial A-geometries related to the
Hoffman-Singleton graph (Section 1.1)

e hemisystem — schemes arising from hemisystems (Corollary 7.8)
ovals of PG(2,4) — Higman’s scheme defined on the ovals of PG(2,4)
(Section 7.6.2)
folded 8-cube — (Section 7.6.2)

e ternary Golay code — the decomposition of Goethals and Seidel in [23]
(Section 7.6.2)

e D_4(q) and 0+(8,2), triality — Higman’s triality schemes and their dis-
mantled schemes (Example 3.5)

e Leech lattice— Higman’s Leech lattice example [28, Ex. 4] (Section 7.6.2)

srg(50,42,35,36) w <=7
{21, 16, 6, 1; 1, 6, 16, 21} 2 100=1+ 15+ 42+ 35+ 7 156 50 -5 -15 Hoff-Singleton (P)
{21, 16, 8, 1; 1, 4, 16, 21} 3 150=1+ 30+ 42+ 70+ 7 30 10 0 -5 -15 Hoff-Singleton
-{21, 16, 9, 1; 1, 3, 16, 21} 4 200=1+ 45+ 42+ 105+ 7 45 150 -5 -15
-{21, 16, 9.6,1; 1, 2.4,16, 21} 5 250=1+ 60+ 42+ 140+ 7 60 200 -5 -15
-{21, 16, 10, 1; 1, 2, 16, 21} 6 300=1+ 75+ 42+ 175+ 7 7% 250 -5 -15

srg(56,45,36,36)
1{20, 16.333, 4.667,
1{20, 16.333, 6.222,
-{20, 16.333, 7,
-{20, 16.333, 7.467,

srg(64,28,12,12)

.667, 16.333, 20} 112=1+ 20+ 45+ 36+ 10 20 6

w
4 2 -6 -20 hemisystem
3.111, 16.333, 20} 3 168=1+ 40+ 45+ 72+ 10 40 12

2 4

1 5

0
0 -6 -20 ovals of PG(2,4)

224=1+ 60+ 45+ 108+ 10 60 18 0 -6 -20

280=1+ 80+ 45+ 144+ 10 80 240 -6 -20

.333, 16.333, 20}
.867, 16.333, 20}

1{28, 15, 6, 1; 1, 6, 15, 28} 2 128=1+ 8+ 28+ 56+ 35 8 40 -4 -8 folded 8-cube (P)
srg(81,60,45,42) w <=3

1{20, 18, 3, 1; 1, 3, 18, 20} 2 162=1+ 36+ 60+ 45+ 20 36 90 -9 -36 ternary Golay code

+{20, 18, 4, 1; 1, 2, 18, 20} 3 243=1+ 72+ 60+ 90+ 20 72 18 0 -9 -36 ternary Golay code
srg(135,70,37,35) W <= 14

+{50, 31.5, 9.375, 1; 1, 9.375, 31.5, 50} 2 270=1+ 15+ 70+ 120+ 64 156 60 -6 -15D_4(2) (P)

+{50, 31.5, 12.5, 1; 1, 6.25, 31.5, 50} 3 405=1+ 30+ 70+ 240+ 64 30 12 0 -6 -15 0+(8,2), triality

{50, 31.5, 14.0625,1; 1, 4.6875,31.5, 50} 4 540=1+ 45+ 70+ 360+ 64 45 18 0 -6 -15

{50, 31.5, 15, 1; 1, 3.75, 31.5, 50} 5 675=1+ 60+ 70+ 480+ 64 60 240 -6 -15

{50, 31.5, 15.625, 1; 1, 3.125, 31.5, 50} 6 810=1+ 75+ 70+ 600+ 64 75 300 -6 -15
srg(162,140,121,120) w <= 14

{56, 45, 12, 1; 1, 12, 45, 56} 2 324=1+ 36+140+ 126+ 21 36 90 -9 -36 (P)

{56, 45, 16, 1; 1, 8, 45, 56} 3 486=1+ 72+140+ 252+ 21 72 180 -9 -36

{56, 45, 18, 1; 1, 6, 45, 56} 4 648=1+ 108+140+ 378+ 21 108 27 0 -9 -36

{56, 45, 19.2,1; 1, 4.8,45, 56} 5 810=1+ 144+140+ 504+ 21 144 36 0 -9 -36

{56, 45, 20, 1; 1, 4, 45, 56} 6 972=1+ 180+140+ 630+ 21 180 45 0 -9 -36
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srg(196,150,116,110) W
{45, 40, 6, 1; 1, 6, 40, 45} 2
{45, 40, 8, 1; 1, 4, 40, 45} 3
{45, 40, 9, 1; 1, 3, 40, 45} 4
{45, 40, 9.6,1; 1, 2.4,40, 45} 5
{45, 40, 10, 1; 1, 2, 40, 45} 6
srg(243,176,130,120) w
{44, 40.5, 4.5, 1; 1, 4.5, 40.5, 44} 2
{44, 40.5, 6, 1; 1, 3, 40.5, 44} 3
{44, 40.5, 6.75,1; 1, 2.25,40.5, 44} 4
srg(320,220,156,140) W
{44, 41.667, 3.333, 1; 1, 3.333, 41.667, 44} 2
{44, 41.667, 4.444, 1; 1, 2.222, 41.667, 44} 3
srg(378,325,280,275) W
+{104, 88.2, 16.8, 1; 1, 16.8,88.2, 104} 2
{104, 88.2, 22.4, 1; 1, 11.2,88.2, 104} 3
{104, 88.2, 25.2, 1; 1, 8.4, 88.2, 104} 4
{104, 88.2, 26.88,1; 1, 6.72,88.2, 104} 5
{104, 88.2, 28, 1; 1, 5.6, 88.2, 104} 6
srg(392,345,304,300) w
{115, 96, 20, 1; 1, 20, 96, 115} 2
{115, 96, 26.667,1; 1, 13.333,96, 115} 3
{115, 96, 30, 1; 1, 10, 96, 115} 4
{115, 96, 32, 1; 1, 8, 96, 115} 5
{115, 96, 33.333,1; 1, 6.667,96, 115} 6
srg(400,315,250,240) W
{84, 75, 10, 1; 1, 10, 75, 84} 2
{84, 75, 13.333,1; 1, 6.667,75, 84} 3
{84, 75, 15, 1; 1, 5, 75, 84} 4
{84, 75, 16, 1; 1, 4, 75, 84} 5
{84, 75, 16.667,1; 1, 3.333,75, 84} 6
srg(540,385,280,260) W
{77, 72, 6, 1; 1, 6, 72, 77} 2
{77, 72, 8, 1; 1, 4, 72, 77} 3
{77, 72, 9, 1; 1, 3, 72, 77} 4
{77, 72, 9.6,1; 1, 2.4,72, 77} 5
{77, 72, 10, 1; 1, 2, 72, 77} 6
srg(672,440,292,280)
{176, 135, 24, 1; 1, 24, 135, 176} 2
srg(704,475,330,300) W
{76, 72.6, 4.4, 1; 1, 4.4, 72.6, 76} 2
{76, 72.6, 5.867,1, 1, 2.933,72.6, 76} 3
{76, 72.6, 6.6, 1; 1, 2.2, 72.6, 76} 4
srg(729,588,477,462) W
{140, 126, 15, 1; 1,15, 126, 140} 2
{140, 126, 20, 1; 1,10, 126, 140} 3
{140, 126, 22.5,1; 1, 7.5,126, 140} 4
{140, 126, 24, 1; 1, 6, 126, 140} 5
{140, 126, 25, 1; 1, 5, 126, 140} 6
srg(760,594,468,450) W
{132, 120.333,12.667,1;1,12.667,120.333,132} 2
{132, 120.333,16.889,1;1, 8.444,120.333,132} 3
{132, 120.333,19, 1;1, 6.333,120.333,132} 4
{132, 120.333,20.267,1;1, 5.067,120.333,132} 5
{132, 120.333,21.111,1;1, 4.222,120.333,132} 6
srg(800,714,638,630) W
{204, 175, 30, 1; 1, 30, 175, 204} 2
{204, 175, 1, 20, 175, 204} 3
{204, 175, ; 1, 15, 175, 204} 4
{204, 175, 1, 12, 175, 204} 5
{204, 175, ; 1, 10, 175, 204} 6
srg(875,570,385,345) W
{76, 73.5, 3.5, 1; 1, 3.5, 73.5, 76} 2
{76, 73.5, 4.667, 1; 1, 2.333,73.5, 76} 3
srg(1120,390,146,130) w
+{300, 212.333,38.889,1;1,38.889,212.333,300} 2
+{300, 212.333,51.852,1;1,25.926,212.333,300} 3
{300, 212.333,58.333,1;1,19.444,212.333,300} 4
{300, 212.333,62.222,1;1,15.556,212.333,300} 5
{300, 212.333,64.815,1;1,12.963,212.333,300} 6

IN ASSOCIATION

<=6
392=1+
588=1+
784=1+
980=1+

1176=1+

<=4
486=1+
729=1+
972=1+

<=3
640=1+
960=1+

<= 19

756=1+
1134=1+
1512=1+
1890=1+
2268=1+

<= 23

784=1+
1176=1+
1568=1+
1960=1+
2352=1+

<= 11

800=1+
1200=1+
1600=1+
2000=1+
2400=1+

<=6

1080=1+
1620=1+
2160=1+
2700=1+

SCHEMES

70+150+ 126+ 45 70 14
140+150+ 252+ 45 140 28
210+150+ 378+ 45 210 42
280+150+ 504+ 45 280 56
350+150+ 630+ 45 350 70
99+176+ 144+ 66 99 18
198+176+ 288+ 66 198 36
297+176+ 432+ 66 297 54
144+220+ 176+ 99 144 24
288+220+ 352+ 99 288 48
78+325+ 300+ 52 78 15
156+325+ 600+ 52 156 30
234+325+ 900+ 52 234 45
312+325+1200+ 52 312 60
390+325+1500+ 52 390 75
70+345+ 322+ 46 70 14
140+345+ 644+ 46 140 28
210+345+ 966+ 46 210 42
280+345+1288+ 46 280 56
350+345+1610+ 46 350 70
120+315+ 280+ 84 120 20
240+315+ 560+ 84 240 40
360+315+ 840+ 84 360 60
480+315+1120+ 84 480 80
600+315+1400+ 84 600 100

210+385+ 330+154
420+385+ 660+154
630+385+ 990+154
840+385+1320+154

3240=1+1050+385+1650+154

1344=1+

<=4

1408=1+
2112=1+
2816=1+

<= 16

1458=1+
2187=1+
2916=1+
3645=1+
4374=1+

<= 13

1520=1+
2280=1+
3040=1+
3800=1+

4560=1+1100+

<= 34

1600=1+
2400=1+
3200=1+
4000=1+
4800=1+

<=3
1750=1+
2625=1+

<= b4

2240=1+
3360=1+
4480=1+
5600=1+
6720=1+

56+440+ 616+231

304+475+ 400+228
608+475+ 800+228
912+475+1200+228

189+
378+
567+
756+
945+

588+ 540+140
588+1080+140
588+1620+140
588+2160+140
588+2700+140

220+
440+
660+
880+

594+ 540+165
594+1080+165
594+1620+165
594+2160+165
594+2700+165

120+
240+
360+
480+
600+

714+ 680+
714+1360+
714+2040+
714+2720+
714+3400+

400+
800+

570+ 475+304
570+ 950+304

40+
80+
120+
160+
200+

390+1080+729
390+2160+729
390+3240+729
390+4320+729
390+5400+729

210
420
630
840
1050

56

304

912

189
378
567
756
945

220
440
660
880
1100

120

360

480
600

400
800

40
80
120

200

30
60
90
120
150

14

40
80
120

27
54
81
108

30
60

120

150

20

60

80
100

50

12
24
36

60

oo ooo

-14
-14
-14
-14
-14

-18
-18
-18

-24
-24

-15
-15
-15
-15
-15

-14
-14
-14
-14
-14

-20
-20
-20
-20
-20

-30
-30

-30
-30

-14

-27
-27
=27
-27

-30
-30
-30
-30
-30

-20
-20
-20
-20
-20

-50

-12
-12
-12
-12
-12

-144
-144

-120
-120

-120
-120

-210
-210
-210
-210
-210

-304

-304

-189
-189

-189
-189

-220
-220
-220
-220
-220

-120

-120
-120

-400
-400

-40

-40

-40
-40

39

hemisystem

(P)

(P)

(P)

D_4(3) (P)
0+(8,3), triality
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srg(1210,819,568,525) W <=6
{117, 112, 6, 1; 1, 6, 112, 117} 2 2420=1+ 495+ 819+ 715+390 495 55 0 -55 -495
{117, 112, 8, 1; 1, 4, 112, 117} 3 3630=1+ 990+ 819+1430+390 990 110 O -55 -495
{117, 112, 9, 1; 1, 3, 112, 117} 4 4840=1+1485+ 819+2145+390 1485 165 0 -55 -495
{117, 112, 9.6,1; 1, 2.4,112, 117} 5 6050=1+1980+ 819+2860+390 1980 220 0 -55 -495
{117, 112,10, 1; 1, 2, 112, 117} 6 7260=1+2475+ 819+3575+390 2475 275 0 -55 -495
srg(1225,1008,833,812) w <= 23
{216, 196, 21, 1; 1,21, 196, 216} 2 2450=1+ 280+1008+ 945+216 280 35 0 -35 -280
{216, 196, 28, 1; 1,14, 196, 216} 3 3675=1+ 560+1008+1890+216 560 70 O -35 -280
{216, 196, 31.5,1; 1,10.5,196, 216} 4 4900=1+ 840+1008+2835+216 840 105 O -35 -280
{216, 196, 33.6,1; 1, 8.4,196, 216} 5 6125=1+1120+1008+3780+216 1120 140 0 -35 -280
{216, 196, 35, 1; 1, 7, 196, 216} 6 7350=1+1400+1008+4725+216 1400 175 0 -35 -280

srg(1376,1225,1092,1078) w <= 41
+{300, 264.143,36.857,1;1,36.857,264.143,300} 2 2752=1+ 200+1225+1176+150 200 28 0 -28 -200 hemisystem
{300, 264.143,49.143,1;1,24.571,264.143,300} 3 4128=1+ 400+1225+2352+150 400 56 0 -28 -200
{300, 264.143,55.286,1;1,18.429,264.143,300} 4 5504=1+ 600+1225+3528+150 600 84 0 -28 -200
{300, 264.143,58.971,1;1,14.743,264.143,300} 5 6880=1+ 800+1225+4704+150 800 112 0 -28 -200
{300, 264.143,61.429,1;1,12.286,264.143,300} 6 8256=1+1000+1225+5880+150 1000 140 0 -28 -200

srg(1408,567,246,216) w <= 27
+{252, 201.667,22, 151,22, 201.667,252} 2 2816=1+ 112+ 567+1296+840 112 24 0 -24 -112 Leech lattice
+{252, 201.667,29.333,1;1,14.667,201.667,252} 3 4224=1+ 224+ 567+2592+840 224 48 0 -24 -112 Leech lattice
{252, 201.667,33, 151,11, 201.667,252} 4 5632=1+ 336+ 567+3888+840 336 72 0 -24 -112
{252, 201.667,35.2, 1;1, 8.8, 201.667,252} 5 7040=1+ 448+ 567+5184+840 448 96 0 -24 -112
{252, 201.667,36.667,1;1, 7.333,201.667,252} 6 8448=1+ 560+ 567+6480+840 560 120 0 -24 -112

B

srg(1458,1316,1189,1176) w <= 47
{329, 288, 42, 1; 1, 42, 288, 329} 2 2916=1+ 189+1316+1269+141 189 27 0 -27 -189 (P)
{329, 288, 56, 1; 1, 28, 288, 329} 3 4374=1+ 378+1316+2538+141 378 54 0 -27 -189
{329, 288, 63, 1; 1, 21, 288, 329} 4 5832=1+ 567+1316+3807+141 567 81 0 -27 -189
{329, 288, 67.2,1; 1, 16.8,288, 329} 5 7290=1+ 756+1316+5076+141 756 108 0 -27 -189
{329, 288, 70, 1; 1, 14, 288, 329} 6 8748=1+ 945+1316+6345+141 945 135 0 -27 -189

srg(1625,1044,693,630) w <=4
{116, 112.667, 4.333,1;1,4.333,112.667, 116} 2 3250=1+ 725+1044+ 900+580 725 75 0 -75 -725
{116, 112.667, 5.778,1;1,2.889,112.667, 116} 3 4875=1+1450+1044+1800+580 1450 150 0 -75 -725
{116, 112.667, 6.5, 1;1,2.167,112.667, 116} 4 6500=1+2175+1044+2700+580 2175 225 0 -75 -725

srg(1701,1190,847,798) W <=9
{170, 162, 9, 1; 1, 9, 162, 170} 2 3402=1+ 630+1190+1071+510 630 63 O -63 -630
{170, 162, 12, 1; 1, 6, 162, 170} 3 5103=1+1260+1190+2142+510 1260 126 0 -63 -630
{170, 162, 13.5,1; 1, 4.5,162, 170} 4 6804=1+1890+1190+3213+510 1890 189 0 -63 -630
{170, 162, 14.4,1; 1, 3.6,162, 170} 5 8505=1+2520+1190+4284+510 2520 252 0 -63 -630
{170, 162, 15, 1; 1, 3, 162, 170} 6 10206=1+3150+1190+5355+510 3150 315 0 -63 -630
srg(1936,1620,1360,1332) w <= 30
{315, 288, 28, 1; 1, 28, 288, 315} 2 3872=1+ 396+1620+1540+315 396 44 0 -44 -396
{315, 288, 37.333,1; 1, 18.667,288, 315} 3 5808=1+ 792+1620+3080+315 792 88 0 -44 -396
{315, 288, 42, 1; 1, 14, 288, 315} 4 7744=1+1188+1620+4620+315 1188 132 0 -44 -396
{315, 288, 44.8, 1; 1, 11.2, 288, 315} 5 9680=1+1584+1620+6160+315 1584 176 0 -44 -396
{315, 288, 46.667,1; 1, 9.333,288, 315} 6 11616=1+1980+1620+7700+316 1980 220 0 -44 -396
srg(1944,1218,792,714) w <=3
{116, 113.4, 3.6, 1; 1, 3.6, 113.4, 116} 2 3888=1+ 900+1218+1044+725 900 90 0 -90 -900
{116, 113.4, 4.8, 1; 1, 2.4, 113.4, 116} 3 5832=1+1800+1218+2088+725 1800 180 0 -90 -900
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