Structure and magnetization of two-dimensional vortex arrays in the presence of periodic pinning
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Ground-state properties of a two-dimensional system of superconducting vortices in the presence of a
periodic array of strong pinning centers are studied analytically and numerically. The ground states of the
vortex system at different filling ratios are obtained using a simple geometric argument under the assumption
that the penetration depth is much smaller than the spacing of the pin lattice. The results of this calculation are
confirmed by numerical studies in which simulated annealing is used to locate the ground states of the vortex
system. The zero-temperature equilibrium magnetization as a function of the applied field is obtained by
numerically calculating the energy of the ground state for a large number of closely spaced filling ratios. The
results show interesting commensurability effects such as plateaus B-ktheliagram at simple fractional
filling ratios.

[. INTRODUCTION for commensurate values of n. Magnetization
measurement$’ in the irreversible(vortex solig regime
In the mixed phase of type-Il superconductors, magnetihiave demonstrated the occurrence of anomalies at certain
flux penetrates the sample in the form of quantized vortexharmonics ofB,. The effectiveness of pinning at integral
lines! The amount of flux carried by each vortex line is values ofn has been fourld'~*>to produce regularly spaced
equal to the basic flux quantumbPy=hc/(2e)=2.07 sharp minima in the resistivity versus field curve. A pinning-
X 10 " Gen?. These vortex lines form a special physical induced reconfiguration of the vortex lattice has been
system known as “vortex matter.” In the absence of anyobserved* in a thin-film superconductor with a rectangular
pinning sites in the material, the vortex lines form a triangu-array of magnetic dots. Some of these effects have been stud-
lar lattice known as the Abrikosov lattiée. ied theoretically, using analyti¢ and numericaf =22 meth-
Equilibrium and transport properties of the mixed phaseods. Experimental realizations of a system of interacting
of type-ll superconductors are strongly affected by the pres*particles” in the presence of an external periodic potential
ence of pinning centers, either intrinsic to the system or arare also obtained in colloidal suspensions in interfering laser
tificially generated. Understanding the effects of pinning infields?® and in periodic arrays of optical traps.
these systems is very important for practical applications be- In this paper, we have used analytic and numerical meth-
cause the presence of pinning strongly influences the valueds to analyze the zero-temperature structure of vortex arrays
of the critical current in the mixed phase. in the presence of periodic pinning. We have also carried out
In recent years, a variety of nanofabrication techniques numerical study of the zero-temperatequilibrium mag-
have been used to create periodic arrays of pinning centers iretization of a superconducting film with a square array of
thin-film superconductors.’® Such arrays may consist of pinning centers as a function of the applied field. In Sec. I,
microholes (“antidots”),%~® defects produced by the bom- we consider the ground states of a vortex system in a square
bardment of iof or electrori® beams, or magnetic dot57®  array of pinning centers for fillings less than unity. We look
These pinning centers are “strong” in the sense that eaclat a class of structures that are Bravais lattices with one
pinning site can trap one or more vortices at low temperavortex per basis if the fillingn is of the form 1¢, and withp
tures. The effects of periodic pinning depend strongly on theyortices per basis ih=p/q (p and g are integers greater
relative values ofB, and B, whereB,=p,®, (p, is the than unity, withp<q). The structure with the lowest energy
areal density of the pinning centgis the so-called “match- in this class can be obtained rather easily. We find that the
ing field,” and B is the magnetic induction that determines “ground-state” structure obtained this way matches those
the areal density, of vortices (po=B/®,). The filling ra-  obtained from experimentsand simulations?° for a large
tio, n, defined as1=B/B,, measures the commensurability number of simple fractional values of The results obtained
of the vortex system with the underlying pin lattice. Thein this section can also be used to predict the ground-state
interplay between the lattice constant of the pin afidster-  structures for £n<2. In Sec. lll, we consider the ground-
mined byB,) and the intervortex separatigdetermined by  state structures for fillings greater than 2. In these calcula-
B) can lead to a variety of interesting effects in such systions, we use simple geometric arguments to arrive at the
tems. ground states. This analysis is performed under the assump-
Some of these effects have been observed in recent exon that the range of the intervortex interaction, which is set
periments. Imaging experiments using various techniqueby the penetration depth, is much smaller than the spacing
such as Bitter decoratiohlorentz microscopy,and scan- between the pinning sites. We show that the ground-state
ning Hall-probe microscopy? have shown the formation of structures obtained from this simple analysis match the ones
ordered structures of the vortex system at low temperaturesbtained from simulated annealing. This analysis is extended



to rectangular and triangular pin lattices in Sec. IV. In Sec. V, (a) (d)
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We consider a superconducting film that has a square ar* * * = © « = - ©-06-0-+-0
ray of pinning sites with lattice constaat The magnetic = = ® = =+ + - @ @0 -0 -00
field is assumed to be perpendicular to the surface of the® « « + « ®@ « ©QO® -0+ -00:
film. The “matching field” By is then given by B, ©) 0
=d,/d? and the filling fractionn is given byn=B/B, e e e e e e e . @+ o +® ¢ + O
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tex interaction, but is of extremely short range. The large
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must occupy pinning sites as long as the number of vortices
does not exceed the number of pinning sites. We also assum” * * * * * ° ° @O .
that a pinning site cannot accommodate more than one vor~ * ° ° * ° ° ° A
tex. If the pinning centers in the film are microholes, then® * = ® * = © - ®++--0--0
this assumption amounts to the requirerietitat the radius FIG. 1. The ground-state structures for a few filling fractions

of each hole is close to two times the coherence legghh  n<1. The different filling fractions aré) 1/2, (b) 1/5, (c) 1/9, (d)
the superconductor. These assumptions ensure that interstitigh, (e) 3/5, and(f) 2/7. The dots in the figures represent the pinning
vortices appear only when the filling fractiamis greater sijtes and the circles represent the vortices.

than unity. The assumed short range of the pinning potential

can be justified if the defect diameter is small compared t% to pick th that minimi th E I
the defect spacingl. Another assumption that we make in ave 1o pick the one thal minimizes the energy. For sma

most of our calculations is that the intervortex interactionvalues_ ofg, this can be done by hand, butqibec_omes large
falls off rapidly with distance. This is ensured if the penetra-2nd highly factorizable, the number of possible structures
tion depth\ is much smaller that the pin-lattice spacitign increases rapidly. In such cases, we have resorted_to comput-
our calculations, we take the rafidd to be 10. This value is ©rs t0 generate these structures and compare their energies.
appropriate for the pin lattice of Ref. 9. We consider tem- The structures so obtained for fillings 1/2 and 1/4 match
peratures that are low enough to neglect effects of depinninfiose found in the imaging experimenlso for fillings 1/2,
and vortex-lattice melting. The problem of finding the struc-1/3, 1/4, 1/5, 1/8, 1/9, 1/10, and 1/15, we find the same
ture of the vortex system then reduces to locating the groungtructures as those obtained by solving the “greedy lattice-
state in the presence of the pinning potential. gas model®® exactly. This is understandable because when
Consider now fillings of the forrm=1/q, q being an the intervortex interaction falls off rapidly as the distance is
integer greater than 1. Let us look at Bravais lattices that camcreased above the defect spacihghe ground state can be
be formed for a specifia by distributing the vortices on the attained by finding the lattice thahaximizes the shortest
square pin lattice with one vortex per basis. The motivatiordistance between vortex pairff two structures have the
for considering such lattices is that this will automatically same value and number of shortest distances, then the next
ensure that there is no shear of the vortices with respect tshortest distance should be maximized, and so on. For fill-
the pin lattice, since the forces on a vortex due to otheings 1/2, 1/3, 1/4, and 1/5, our analysis also yields the same
vortices will add up exactly to zero. The unit-cell area of structures as those found in the latdg (U, is the energy of
these structures has to hed?. So the possible unit cells can on-site repulsion between two electrptimit of the neutral
be obtained by factorizing into products of the form.s (r Falicov-Kimball modef’ In Figs. Xa-1(c), we show the
ands are integerg arranging the vortices at the corners of structures so obtained for a few fillings of the form
rectangles of dimensiord X sd, and then sliding the parallel =1/q. The ground-state structure shown in Figb)ifor n
sides relative to each other. This procedure produces a large1/5 is different from that found in Ref. 18 from a simulated
number of structures depending on the valuenaddnd we  annealing calculation. This difference is probably due to the



use of a differen{logarithmig intervortex potential in Ref. A D A D’
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whereKj is the zeroth-order Hankel function of imaginary E
argument and is the film thickness. Fon=1/2, the nearest-
neighbor distance i§2d and the next-nearest-neighbor dis-  FIG. 2. Putting two vortices in a square. The configuratiotan
tance is 2. So the interaction energies are, to within a con-is the global energy minimum, and the configurationih can at
stant prefactor, given by best be a local minimum of the energy. Angles &re15° and¢
=24.49°. The square is drawn for easy visualization and the dotted
lines are the bisectors of the sides. Note that there is already one
pinned vortex at each of the corners of the square. Distances are
AB=BC=BE=D,,,andA'B'=B'C'=B’E'=Dp,.

(@) (b)

2d
Up Ko< fT) =0.2x10°6,

occupied and the centers of the square unit cells of the pin
lattice now act as new pinning centers for interstitial vorti-

One can see here that there is an orders-of-magnitude diffef€S- But things look different when the filling goes above the
ence in these energies which cannot be compensated by dfaluen=2. For such values af, we can no longer place the
ferences arising from interactions with more distant neighmterstltlal vortices at the centers of the squares and look for
bors. This difference is going to be more prominent at lowerSimple structures obtained this way. Also, we now have to
densities. This tells us that the maximization of the shortesgtart looking into the stability of the structures since the
intervortex distance in a lattice for a given filling would lead Sduare symmetry would not be present.

to the ground states, provided the lattice spacing is large
compared to the penetration depth of the film. This, in fact, is
exactly the definition of the “greedy lattice gas.” However, . .
one hE)i/S to be cautious about?his myethod be%:ause, as noted inl;lerg we are face(IjBV\;lth the Faskt oftﬁlacmgblmore ]E*}?‘”d."“e
Ref. 26, the structures can be strongly dependent on the for priex n 3 squa;e. _glgrel going Ig € prob em ot finc '”9
of the potential in certain ranges nfand we can even have the ground state fan=5/2, let us ask a more basic question:

aperiodic structures as ground states. The ground-state stri@lven a smglg unit cell of the square pin lattice with each
iofforner occupied by a vortex, how can we arrange two more

to ensure that they are indeed the lowest-energy configur _c_)rt|ce§ inside th|§ squar”e S0 as to minimize the energy:
ince “greedy lattice gas” has been a good approximation

tions. To give an example of a case in which this treatmen . . .
does not lead to the true ground state, we found that fo or the previous cases, we try to tackle this problem by using
filling 1/16, the energy per vortex for the structure with mini- he maximizing th? shortest d|stan.ce. method. In order to
mum energy obtained this way was greater than that for ﬁII_stab|I|ze an interstitial vortex by maximizing the shortest dis-
ing 1/15, implying that the structure obtained for=1/16 tance, its distance from at least three nearest vortices must be
was not ’the round state the shortest distance. It is also required that these vortices
When thegfilling fractio.n is of the fornp/q with p not must be spread in such a way that if we draw straight lines
equal to 1, one can look for ground states in a subset o]c om the vortgx in question to these neighbors, the angles
structures where the unit cell has the sig# with p vortices orm_ed by adjace_nt I|_nes must be less than 180°. The proof
of this statement is given in the Appendix.

In a basis. We have shown n F|gs(:d1—1(f) some of the It can be seen from the symmetry of the problem that we
ground-state structures obtained this way. These structur%s

match those obtained from our simulated annealing calcuIaéﬁ\;ﬁgos?(;zgetgler;g; Vtcr)lglccisn(c)iir;iéie :Lneistig)rzglggatt?:vgquﬁir;
tion. These ground states show the “stripe” structure pre- )

) . . .~ leaves us with only two possible ways of doing it, which are
?;%tgegs by Watsoff and Kennedy/ in appropriate density shown in Fig. 2. In Fig. @) the shortest distand®,,,, can be

obtained by solving the equation

2d 1
UnnxKo| | =0.6x10"*

A. The ground state for n=52

Ill. GROUND STATES FOR A SQUARE PIN ARRAY
WITH FILLING RATIO GREATER THAN 2

2

1 2, d 2

Z(d—Dma) +Z:Dma' (2)
If nis greater that 1 but smaller than 2, then the ground-

state structures are similar to the ones for the caseleés On solving this equation, we geAB=BC=BE=D,,

than 1. The only difference is that the pinning sites are all=(/7—1)d/3. In Fig. 2b) the vorticesA’,B’, andC’ form



@ © @ 9 unit cell, at least for large values df \. However, the unit

o cell of Fig. 3a) is preferred ifd/\ is not very large. This can

o o o) o) be understood in the following way: the advantage that Fig.
Op 3(b) has over Fig. @) is that it has only half the number of
next-nearest neighbokinteractions like that between vorti-
cesm andn) compared to that of Fig.(8). But this is done

o o o o o o at the cost of bringing in interactions such as those between
t a vortex pairs p,q) and (p,t) for every “gain” of a next-
nearest-neighbor interaction. The energies of these two inter-
actions ford/\ =10 are found to be quite close. These ener-
gies are

(a) (b)

® P @ 9 Umn®Ko(rmn/N)=3.2x10"4,

o o o o o o Upq@Ko(r pg/N)=1.9x10"%,

wherer ,, andr 4 are the distances between vorticesind
n, andp andq in Fig. 3, respectively. It is clear from this
comparison that the unit cell of Fig(&® would be preferred
for d/A=10.

The ratio of interaction energies of the next-nearest and
the nearest neighbors is 0.07 for this lattice witén=10.

© @ This energy difference is appreciable here, so that we can

FIG. 3. Possible &8 2d unit cells forn=5/2. The unit cell(a) expect that the unit cell at which we arrived is the correct
is the lowest-energy configuration faVA=10. For much larger one. Note'tlhat any net force that might be prgsent on one of
values ofd/\, the unit cell with the lowest energy will be the one in the interstitial vortices due to the asymmetw in the structure
(b). can be compensated by extremely small displacements from
the positions obtained from the “maximization of the short-

an equilateral triangle. Thus the nearest-neighbor distanc@t distance” method.
A'B’'=B’'C'=B'E' is

B. The ground state forn=3

D mp=Se¢ 15°)g_ (3 When the filling fraction equals 3, we have to build up the
lattice using blocks of the type of Fig(&. Again, looking at
The ang|e¢ in F|g 2(a) is 24.49°, and the ang|e in F|g unit cells of size 21x2d or Sma”er, we have the Configura-
2(b) is 15°. The interaction energies corresponding to theséons shown in Fig. 4 to consider. Here it is easy to see that
two distances fod/\=10 are the unit cell of Fig. 4b) is preferred over the others. This is
because it is the configuration that maximizes the minimum
J7-1 . distance between any two vortices in different squares, the
Uas*Ko| 55— d]=2.2¢10"", distances between vortices within one square being the same
in all the configurations. Again comparing the nearest inter-
se¢15°) action and the next-nearest one, we have
UA,B,ocKO(—d) =3.0x10"3.
2\ UporKo(rgp/N)=2.2X1073,
From comparing these two energies it is clear that Fig). i3 ,
the global minimum, whereas the configuration of Fi¢)2 Unn®Ko(rpg/N)=1.9x10"".

can at best be a local minimum. There is an appreciable difference between these two values,

Coming back to the=5/2 case, we now have to build Up 504 hence, the ground state at which we have arrived is
the lattice with an equal number of two types of squares—;

i . ol . d th h ith > reasonable. When the filling lies between 2 and 3, one can
one .V\.”tl two mterstltle;] vor:tlces anh the ot Ier with one in- safely assume that the ground-state structure can be built up
terstitial vortex. Note that here we have neglected structureﬁsing squares of the type of Fig(a?, and squares that have

that have three or more interstitial vortices inside a squarg,. \,ortex at the center. In fact we make use of this in our

unit cell because such structures would drastically brings;, jations to arrive at the ground states, as described in
down the nearest-neighbor distance. Let us now look at th%ec. V.

possible units cells of sized 2d that can be made out of
these two types of squares. These are shown in Fig. 3. If one
constructs the lattice with these unit cells, the configuration
of Fig. 3(b) offers the least number of next-nearest neigh- Here we have to place three interstitial vortices in one
bors, the number of nearest neighbors being the same in abuare. This is nontrivial since even if we ensure that the
the cases. So one can expect Fign)3o be the ground-state shortest distance is maximized in one square, two vortices in

C. The ground state forn=4
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© @ FIG. 6. The distances one has to equate when maximizing the
shortest distance fan=4, taking into consideration distances be-

FIG. 4. Possible @x 2d unit cells forn=3. Configuration(b) tween vortices in neighboring squares. Note that the unit-cell size
can be easily seen to offer the maximum next-nearest-neighbor di§ere is one square unit.
tance, the nearest-neighbor distances being the same and equal in ) )
number in each case. obtained by solving the equations
nearby squares may be closer to each other than the shortest AB=BC=CA=D;, (4)
distance within a square when we create the lattice. Note that CB'=AC'=AP=D.. ®)

we did not come across this problem in the5/2 orn=3
fillings. To illustrate this problem, we show in Fig(éh a  Note that here we have assumed a unit-cell sized. On

single cell of a square lattice with three interstitial vortices,solving these equations, we obtain the unit cell shown in Fig.
which may very well be a local minimum configuration. But 5(b). In the figure, the anglé equals 15° and the angleis

if we try to build the lattice using this cell, we cannot do it 60°. In this lattice, the shortest distance B
without bringing the vortices in nearby squares closer than=sec(15°)/2 and the next shortest distance B,

the minimum distance in an individual cell. So what we need= 3¢ sec(lB)/(4\/§).

to do is to look for a pattern that will include vortices in  This simple solution may not be the correct one if the
different squares while doing the minimization of the short-|attice spacing is not large enough. For exampledfif

est distance. We can solve this problem trigonometrically=10, as we have been assuming when comparing energies,

Consider Fig. 6. The solution that we are looking for can benen the nearest- and next-nearest-neighbor interaction ener-
gies turn out to be really close. Hence we cannot rule out the

possibility of the lattice arranging in such a way that the

A A
0)90 e G’)e }r’ shortest distance is reduced so as to decrease the number of
- f c nearest or next-nearest neighbors. The relevant energies for
§ ; L T d/A=10 are
0 A 3"’
& 00 I W S R S S D
/B D0 /B F@ KO(—S) =3.1x10 3,
: A ; A
( D
“\ Dns
\ - -3
@ & @ & KO(T =2.1X10"°.
E’ E
@ ® So the ground state obtained above is guaranteed to be the

FIG. 5. Two possible ways of arranging three vortices in acorrect one only for much larger valuesaf\. The ground

square so as to maximize the shortest distance. The configuration ffates we have obtained for=5/2 andn=3 match with the
(a) offers the best arrangement if looked in isolation, but the conimages from experimerts and also the results of

figuration in(b) wins out when one has to construct a lattice of the simulations:’ But for n=4, the structures found in experi-
ments and simulations are different from the one shown in

unit cells. The angle®=15° andp=60°.
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(@) (b) FIG. 8. The unit cells of the ground state, obtained by maximiz-

ing the shortest distance, when the filling is 2 for a rectangular array
FIG. 7. The ground state far=4, obtained by simulated an- of pinning sites.(a) The unit cell when the aspect ratio is greater
nealing when the ratios of the penetration depth to the pin-latticdhan y3. The interstitial vortex is displaced horizontally from the
spacing aréa) 10 and(b) 50. The dark dots denote the pinning sites center of the rectangle by distanBg . In the figure, distances are
and the axis labels are in units of the penetration depth. AB=AC=AD=BF=BE. (b) The ground-state unit cell when the
aspect ratio is less thafB. The interstitial vortex is at the center of

. . . . . th tangle.
Figs. 5b) and 6. This is expected, since in the experiment the e rectangie

value of the ratiad/\ was close to 10. Our simulation with VATV
d/A =10 gives the ground-state structure shown in Fig),7 :u_ (6)
which is similar to the one obtained in experiménn our 6
simulations with very large values off\, we obtain struc- It is worth noting that since the vortex in the center would
tures similar to that in Fig. 6. The simulation result fbiA ~ be moving towards two of the pinned vortices, and away
=50 is shown in Fig. (), which matches well with the from only one interstitial vortex per unit cell, the displace-
predicted structure. It is to be noted that the simulation resulnent will approach the value given above only when the
was obtained by starting the system near the expected groutidtio |/b is appreciably large and in the limit of small pen-
state. So the claim is that it offers at least a local minimum ofetration depth compared to the sides of the rectangle. For
the interaction energy. The simulations were carried out foexample, we have found in our simulations that even when
different system sizes fromd< 2d to 10dx 10d to rule out  the ratiol/b is 2, the ground state fdo/A=15 is one in
any dependence of the results on the boundary condition. Which the interstitial vortex is very close to the center,
whereas foll/b=3 andb/\ =15, the ground-state structure
is quite close to the one obtained from maximizing the short-
IV. GROUND STATES FOR RECTANGULAR est distance. Also, if the ratit/b becomes too large, the
AND TRIANGULAR PIN ARRAYS analysis will have to include more than two of the interstitial
vortices, since now the solution such as that shown in Fig.
One can extend this type of analysis to pinning arraysg(a) can lead to two vortices being closer in the next-nearest
with other symmetries for finding the least energy structuregells or ones even further apart.
for simple filling fractions. Let us first consider the case of a In trying to arrive at the lowest-energy structures for fill-
rectangular array of pinning sites with a pinning unit cell of ings 5/2 and 3, it is important to determine how one can
dimensiond X b, where we také to be the longer side of the accommodate two vortices in a rectangular cell with the
rectangle. We shall consider here only the cases in which thehortest distance being maximized. There are two possible
filling is greater than 1. In the absence of square symmetry, ininima that one has to consider: one in which the vortices
is obvious that the ground-state structure will depend notre arranged along the line dividing the shorter sides, and
only on the penetration depiy but also on the ratit/b. In one in which they are arranged along the line dividing the
the following analysis, we shall always assume thats  longer sides, as shown in Figs(a and 9b), respectively.
much smaller thal, the shorter side of the basic rectangularThe shortest distance in each case is given by
pinning cell. When the filling is 2, for values ofb less than

S

/3, the ground state is one in which each interstitial vortex VA% +3b% |

is at the center of the rectangle, since this ensures that the D= 3 ' @
shortest distance is maximizgésee Fig. 8)]. But when the

aspect ratio exceeds/§ and the interstitial vortices are Jab%+31%2—Dp

placed at the centers of the rectangles, the distance between Doo=——7— (8)

two interstitial vortices in neighboring cells would be shorter

than that between an interstitial vortex and the closest pinneld one considers the distances within the cell, the configura-
vortex. This would lead to a displacement of the interstitialtion of Fig. Ab) gives the lowest energy. But for large values
vortices sideways from the center, along the bisector of thef the ratiol/b, this configuration is disfavored since it al-
shorter sides of the rectangle, to maximize the shortest didews the vortices in one rectangle to get close to those in a
tance. The resulting structure is shown in Figg)8The dis- neighboring one. Also, fof/b>2, the interstitial vortices
placement of the vortex from the center is given by “spill over” into the next cell, since the distancBg, be-
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FIG. 9. The two possible ways in which the shortest distance % ____gV )
can be maximized when there are two vortices in a rectangular cell. T
(& In this case the vortices are placed on the line that divides the ' P
shorter sides of the rectangle. Distances AB=AC=AD=DE | o
=Dyg,. (b) Here the vortices are placed parallel to the shorter sides QQ
and distances aréd'B=A'E=A'D’'=CD’'=Dg,. For I/b less B e Ta))
than 2, the configuration ib) leads to a larger shortest distance w ) S o
(within the cel) than the one irfa). If /b is greater than 2, then the @
distanceD4, becomes greater thdmand the vortices spill over into RO
the next cell. o
C S )
comes greater tham So, one has to work out the structures T
for fillings 5/2 and 3 case by case. For fillings between 2 and )

3, one has to Choo_se th_e appropr_iate number of two-vortex FIG. 10. The unit cells fon=5/2 for a rectangular array of
rectangles of the right k!nq and smgle-vortgx ones and a_r'inning sites(a) The unit cell when the aspect ratio is 4. Distances
range them so as to maximize the shortest d|§tance appearifjg, A\g— Ac= AE=BD. (b) The unit cell when the aspect ratio is
in the stru_c_ture. We have looked at th 2 unit cells POS-  5/4 Here PV=PU=PQ=QW=QS=D,, and QR=RS=RT.
sible for filling 5/2 for two values of the aspect ratidp  \when this structure is repeated periodically, the “image” of the

=4 andl/b=5/4. The unit cells that provide the largest yortex atP would be at the same distanGR from R. This would
minimum distance are shown in Fig. 10. Note that whenensure the stability of the vortex B

[/b=4, the vortices are arranged parallel to the longer side
and in the other case, parallel to the shorter side. Also wheftom the ones obtained from our analysis. This is another
I/b=5/4, the vortex in the single-vortex rectangular cell is example of the importance of the detailed nature of the int-
not located at the center, but is slightly displaced sidewaygrvortex interaction in determining the structure of the
along the bisector of the shorter sides to facilitate the maxiground state.
mization of the second shortest distance involved. Ground- For a triangular array of pinning sites, it is easy to see that
state structures obtained from simulations for different val\when the filling is greater than 1 and less than 3, the inter-
ues ofl/b and large values db/\ are consistent with these stitial vortices will be placed on the centroids of the triangles
predictions. One should again keep in mind that this sort ofn the limit for which one can safely apply the method of
analysis cannot work if the aspect ratio is too large, sincanaximization of the shortest distance. So the ground states
then the distances between vortices in next-nearest or furthgfhenn is between 1 and 3 will be made up of parallelogram
neighbor cells will become important. cells of the form shown in Fig. 12. These unit cells match
For filling equal to 3, the lowest-energy structures ob-well with the results of molecular-dynamics simulatidf$®
tained by considering 22 unit cells for two values of the
aspect ratio, 2 and 5/4, are shown in Fig. 11. Here too, for
large values of the aspect ratio, the structure is composed of
rectangular cells in which the interstitial vortices are aligned
parallel to the longer sid¢Fig. 11(a)], whereas when the In this section, we describe a calculation of the zero-
aspect ratio is smaller, the structure is made up of an altetemperature, equilibrium magnetization of a thin-film super-
nating arrangement of rectangular cells of both tyfdélg.  conductor in the presence of a square array of pinning sites.
11(b)]. The simulated annealing results for similar values ofThe region in théB-H plain in which we are interested is that
the aspect ratio yield the structures obtained from the abovgist aboveH.;, when the flux tubes start entering the sample.
analysis. The idea is to find the free enerdyof the ground state as a
Ground-state structures obtained by simulated annealinfunction of the magnetic inductioB®, and then obtain the
for a rectangular pin array withb=2 and integral values of applied magnetic fieldd by taking a derivative of the free
n are reported in Ref. 19. In that study, the intervortex inter-energy with respect t8. Since we are considering the zero-
action was assumed to depend logarithmically on the intertemperature case, the free energy is just the internal energy
vortex distance. The ground-state structure found in Ref. 19f the flux lattice. Since we are looking for a nearly continu-
for n=2 is similar to that predicted by our analysis. How- ous variation of the internal energy for taking the derivative,
ever, the structure found there for=3 is quite different we need to locate the ground states for filling fractions sepa-

V. EQUILIBRIUM MAGNETIZATION
OF THE GROUND STATES



C D energy to the global ong®f the part of the internal energy

O\ ? associated with intervortex interactions.
B The Helmholtz free energy per unit volume of the super-
POARSEELEEE =8 O o conductor at zero temperature in the presence of the pinning
A sites is
G 5 )
E F . _ Neg +E Nep ©)
o o . o (M= +En= 3,
where the first term is the line energy, the second term is the
C S D interaction energy, and the third term is the pinning energy.
@ Here, ¢ is the line energy per unit lengtle, is the pinning
energy per unit length, and, is the interaction energy per
unit volume for filling fractionn. We note here that the pin-
SO AT X ning energy increases linearly withuntil n becomes 1 and
i @ O then remains constant, since multiple occupation of a pinning
P v center is not allowed. Further, for simplicity, we express the
i S I— g pinning energy as
: AN
____é_g\ /," \‘}, €p=Me|, (10
ST L.
RC’ Ty o 9y wherem is a positive number whose magnitude depends on
the nature of pinning. The interaction part of the free energy,
O O E,, is the computational input. Once we know the free en-
ergy, we can compute the applied magnetic fidldsing the
O relation
G & O
JFs H
®) B an (12)

FIG. 11. Unit cells fom=3 for a rectangular array of pin&) . .
The unit cell when the aspect ratio is 2. Distances AB=AC QSIHg the Star_'dard EXpreSSbmr € and taking the loga-
=AE=BD=BF. (b) The unit cell for the same filling but for an "ithm of the Ginzburg-Landau number to be equal to 2, we

aspect ratio 5/4. Here distances aPQ=PS=PT=QR=QuU  9et the following expression for the applied field as a func-
=D, andTV=UV=VW=WY=WX=Dy,. tion of the filling fraction:

!

rated by small intervals. This would be difficult to do ana- n

Of
{1-m1-0(n-1)]}+ (12)

lytically, since the unit cells for some filling fractions can be 2\ an
arbitrarily large. Also, as becomes large, the simple proce-

dure of maximization of the shortest distance is not going tdHere E/, is given by the expression

yield the correct ground-state structures. So we have resorted

to simulations to determine the ground states. In particular, . (ON

we have used the simulated annealing technique to locate the E”:27-r)\2N |E>J Ko(rij /N, (13

global minima(or at least low-lying local minima close in
whereN is the number of basic pinning squares in the system
and r;; is the separation between vorticesand j in the
ground state for the filling fraction.
The size of the systems we simulated varies froth 2
X 2d to 8dX8d. In all cases, we used periodic boundary
conditions to minimize surface effects. So the minimum dif-
/. - ference between two consecutive filling fractions was
T U =1/64. The ratiod/\ was taken to be 10, as in our previous

@ ® analysis. In order to save computation time, the vortices were

FIG. 12. Basic building blocks for generating ground states forallowed to stay only at the pinning sites when the filling was

triangular pinning arrays when the filling is between 1 anda3. €SS than 1. For fillings betwe_en 1 and 2, every pinning site
When there is a single interstitial vortex in a parallelogram, thewas occupied by a vortex which was never moved and the

shortest distance can be maximized by placing it at one of the tw@Xtra ones were allowed to move near the centers of the basic
centroids of the triangles involved. Distances &B=AD=AC  pinning squares. When the filling was greater that 2 and less
=a/\/3, wherea is the length of the side of a pinning celb)  than 3, the vortex configurations were constructed using ba-
When two vortices are to be placed in a single pin cell, they have t&iC units of squares containing one vortex at its center and
be at the two centroids. squares containing two vortices placed such that the shortest
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FIG. 13. The ground states fda) n=9/4, (b) n=5/2, () n n=3. Figures 16 and 17 show magnified versions of this

=11/4, and(d) n=3 obtained by simulated annealing, as discusse lot in th(29 reglgns betwgenl fllll\llng frﬁcnonsho and 1, ar:.d
in the text. The unit-cell size isdix 4d. The dark dots denote the CStWEeN 2and 3, respectively. Note that we have not explic-

pinning sites and the circles denote the vortices. The axis labels arigy included' the pinning energy term in our analygis_ This
in units of the penetration depth. term would just add a constant contributionHofor fillings

up to 1. The features of the curve fram=1 ton=2 are the

distance within a square is maximizgas in Fig. 2a)]. These ~ S@me as those in the interval between0 andn=1. Thisis
units were then moved around and twisted while cooling tdue to the fgct that the ground-state structures are similar in
arrive at the minimum-energy states. This procedure helpel!® tWo regionssee Sec. Il The B-H plot shows flat re-

us to track low-lying minima faster than if we allowed vor- 9i0ns at values oB corresponding to fillings 1/8, 1/5, 1/4,

tices to move freely. Once the basic structure was thus ob/2: 3/4, 4/5, 7/8, 1, 9/8, 6/5, 5/4, 3/2, 7/4, 9/5, and 2 in the
tained, the vortices were allowed to move freely during filling fraction range between 0 and 2. Also, in the range of

second cooling schedule starting from a lower temperature tBetween 2 and 3, there are roughly two plateaus, appearing
obtain the lowest-energy structure. In Fig. 13 we show som&8€arn=2.3 andn=2.6. . _

of the ground-state structures we have obtained this way for 1€ observed values of the filling fractions between
filings between 2 and 3. For fillings 5/2 and 3, we find that =0 andn=1 at which the plateaus occur indicate that these

the structures match those obtained in experiméaswell values ofn correspond to fillings for which the introduction
as in our analysis using maximization of the shortest disOf @ new vortex into the system leads to the appearance of a

tance. The structures for=9/4 andn=11/4 may not be the

actual ground states, either due to the smallness of the unit 3
cell of our simulation or the presence of many nearly degen- 9.5l
erate local minima. )
In Fig. 14 we plot the ground-state energies obtained from A e
the simulation for different fillings. The simulation unit cell o
was &x8d and the energies were computed for fillings a L5f

1/64 to 3. The upper curve shows the results obtained in the
presence of the pinning sites and the lower curve is the en-
ergy of the triangular lattice for the same density of vortices. 0.5}
Note that we have not included the pinning energy in the . .
plot. This would bring the upper curve below the curve for 15.75 15.85 15.95
the pin-free case. H/B

From the energy versus filling fraction data, one can find
the applied field using Eq11) and then compute the mag-
netizationM using the relation

e

16.05
1]

FIG. 15. The dependence of the magnetic inductoon the
applied fieldH in the entire region of our simulation. A number of
plateaus can be seen at points corresponding to simple rational fill-
ing fractions mentioned in the text. Only the vertical lines corre-
spond to the data points obtained from our calculation; the dotted
lines are guides to the eye. BohandH have been scaled by the
matching fieldB,, .

B=H+47M. (14)

In Fig. 15 we have plotte® versusH in the entire range of
filling for which simulations were carried out, from=0 to



1 : the presence of a periodic array of strong pinning centers. We
have considered several different lattice structures of the pin
0.75! i array and a large number of filling fractions in the range
between zero and 4. In our zero-temperature analysis, we
g&O T i have assumed that each pinning center traps a vortex if the
’ i number of vortices is less than or equal to the number of
pinning centers, but a pinning center cannot trap more than
0.25r ¢ one vortex. The analytic calculations are based on the prin-
{ ciple of maximization of the shortest intervortex distance.
: We have argued that this principle leads to the exact ground
15.7562 15.7569 B 15.7577 states when the spacing of the defect lattice is large com-
o pared to the range of the intervortex interaction set by the
value of the penetration depiln our calculations, we as-
sumed that the spacing of the pin lattice is ten times the
penetration depbh This principle has been used, in combi-
nation with simple geometric considerations, to obtain the
ground states for several values of the filling fractiorThe
shorter distance than those existing in the lattice or in its duajround-state structures so obtained are found to be identical
(i.e., the lattice obtained by replacing particles by holes, ando those found in imaging experimeit@and in earlier
vice versa?® This makes sense because the introduction ofimulationst”?°We have also carried out simulated anneal-
this shorter distance introduces a larger energy scale, leadingg calculations of the ground states in order to test some of
to a discontinuous change in the derivative of the energyhe predictions of the analytic approach. In all cases, we
W|th I‘eSpeCt to the f|”|ng] In the Simulations, we haVe not found that the ana'ytic resu'ts agree W|th those Of our nu-
scanned very small intervals of Also, for some of the fill-  erical calculations.
ings, the ground state may not have been obtained in our \ye have also described the results of a numerical calcu-
simulated ann_eallng _(:a}IcuIatlon. For these reasons, we Cafktion of the equilibrium magnetic inductio® and magneti-
not say anything definite about the true nature of B8l ;4600 M of a planar superconductor with a square array of
curve. It is possible that this curve has plateaus and discorsinning centers as functions of the externally applied fi¢ld
tinuities occurring at all scale®.qg., r?\t all rational valueg of \we show that the interplay between the lattice spacing of the
n). The noisy nature of thB-H plot in the range for which  nin array and the intervortex separation set by the valug of
n lies between 2 and 8see Fig. 17 is also due to these |gads to interesting commensurability effects, appearing as
difficulties. However, this plot shows clear signatures of tWOplateaus and discontinuities in th& vs H plot at simple
plateaus that appear near2.3 andn=2.6. These can be rational values of the filling fractiom. Anomalies in the
understood to happen when first there is an occurrence gfreversible magnetization of thin-film superconductors with
squares containing two vortices coming together next to eacheripdic arrays of pinning centers have been observed at cer-
other diagonallyas in Fig. 3a)], and again when they have tain integral values of in experiments* and simulations’
to be next to each other with a common sjde in Figs. 8)  The presence of a periodic array of pins is also expétted
and 30)], as the value ofi increases from 2 to 3. produce anomalies in the equilibrium magnetization of the
high-temperature vortex liquid at small integral valuesof
VI. SUMMARY AND DISCUSSIONS Our results show that these commensurability effects are

In this paper, we have reported the results of an analytignore pronounced in the field dependence of the equilibrium

calculation of the lowest-energy states of a vortex system ifnagnetization and magnetic induction of such systems in the
low-temperature vortex-solid regime. Experimental investi-

S esnaasessrtre

FIG. 16. Expanded view of the plot of Fig. 15 in the region
betweem=B/B,=0 andn=1. One can see plateaus appearing at
n=1/4, n=1/2, andn=23/4. The dark dots are the data points. The
light dotted line is drawn to guide the eye.

3 gations of these effects would be most welcome.
2'8_ ..':.
i APPENDIX: CONDITION FOR MAXIMIZING
ee2.6' DE— THE SHORTEST DISTANCE
8 2.4¢ Given a particle fixed at some point in a plane, the prob-
— e lem is how to place three other particles around the first one
220 in such a way that if we try to move the first particle from its
{ position, it will get closer to at least one of the three par-
16_0743" 16.0773 16.0803 ticles. The solution is as follows. If we draw straight lines
HB from the particle that we want to move to the other particles,
¢ then each angle between adjacent lines must be less than

FIG. 17. Expanded view of the plot of Fig. 15 in the region 180°. In other words, it should not be possible to draw a
betweem=2 andn=3. One can see plateaus at filings2.3 and  Straight line through the particle in question in such a way
n=2.6, as indicated by the arrows. The dark dots are the actual dathat all the other three particles lie on one side of the line.
points and the light dotted line is shown to guide the eye. Let the particle that we want to move be R (see Fig.



these particles restricts, to within the anglethe direction in
which the particle atP, can move without decreasing its
distance toP; and P,. Now let us check where we can fix
the third particle such that the aforementioned condition is
met, that is, the particle aP, cannot be moved without
bringing it closer to one of the particles By, P,, andPs.

We will consider two possible cases—the third particle in the
regionBPyD of the plane and outside this region.

When the third particle is in the regidPyD (pointP5 in
Fig. 18, it is not possible for particlé®, to move from its
position without decreasing the distance to any one of the
particles. This can be seen if one drops the perpendiculars to
the linesAE and CF from point P5. If point P, is moved
along either of these lines, it will be getting closer to point
P5. But that in turn implies that it cannot be moved into the
region FP,E at all without decreasing the distance from
point P.

If the particle is outside the regidBPyD, for example, a
point such ad;, then it is easy to see that by moving along
one of the tangents to the circles at poity, the particle at
P, can move away from all three other points. Thus we find
18). Let us place two particles &; and P,, anywhere on that the earlier statement we made is proved. This gives us a
the plane. This can be done since one of the angles betweeiice way to maximize the shortest distance since all one has
any two lines will always be less than or equal to 180°. Into do is to make the three distances involved equal, so that if
Fig. 18, AE andCF are the tangents to the circles centered athe central particle tries to move, then one of the distances
P, and P, and passing through poim,. The presence of has to decrease.

FIG. 18. Geometry of the problem of maximizing the shortest
distance(see text
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