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Ground-state properties of a two-dimensional system of superconducting vortices in the presence of a
periodic array of strong pinning centers are studied analytically and numerically. The ground states of the
vortex system at different filling ratios are obtained using a simple geometric argument under the assumption
that the penetration depth is much smaller than the spacing of the pin lattice. The results of this calculation are
confirmed by numerical studies in which simulated annealing is used to locate the ground states of the vortex
system. The zero-temperature equilibrium magnetization as a function of the applied field is obtained by
numerically calculating the energy of the ground state for a large number of closely spaced filling ratios. The
results show interesting commensurability effects such as plateaus in theB-H diagram at simple fractional
filling ratios.
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I. INTRODUCTION

In the mixed phase of type-II superconductors, magn
flux penetrates the sample in the form of quantized vor
lines.1 The amount of flux carried by each vortex line
equal to the basic flux quantumF05hc/(2e)52.07
31027 G cm2. These vortex lines form a special physic
system known as ‘‘vortex matter.’’ In the absence of a
pinning sites in the material, the vortex lines form a triang
lar lattice known as the Abrikosov lattice.2

Equilibrium and transport properties of the mixed pha
of type-II superconductors are strongly affected by the pr
ence of pinning centers, either intrinsic to the system or
tificially generated. Understanding the effects of pinning
these systems is very important for practical applications
cause the presence of pinning strongly influences the v
of the critical current in the mixed phase.

In recent years, a variety of nanofabrication techniqu
have been used to create periodic arrays of pinning cente
thin-film superconductors.3–15 Such arrays may consist o
microholes~‘‘antidots’’ !,3–8 defects produced by the bom
bardment of ion9 or electron10 beams, or magnetic dots.11–15

These pinning centers are ‘‘strong’’ in the sense that e
pinning site can trap one or more vortices at low tempe
tures. The effects of periodic pinning depend strongly on
relative values ofBf and B, where Bf5rpF0 (rp is the
areal density of the pinning centers! is the so-called ‘‘match-
ing field,’’ and B is the magnetic induction that determin
the areal densityr0 of vortices (r05B/F0). The filling ra-
tio, n, defined asn[B/Bf , measures the commensurabili
of the vortex system with the underlying pin lattice. Th
interplay between the lattice constant of the pin array~deter-
mined byBf) and the intervortex separation~determined by
B) can lead to a variety of interesting effects in such s
tems.

Some of these effects have been observed in recen
periments. Imaging experiments using various techniq
such as Bitter decoration,5 Lorentz microscopy,9 and scan-
ning Hall-probe microscopy6,8 have shown the formation o
ordered structures of the vortex system at low temperat
ic
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for commensurate values of n. Magnetization
measurements3,4,7 in the irreversible~vortex solid! regime
have demonstrated the occurrence of anomalies at ce
harmonics ofBf . The effectiveness of pinning at integra
values ofn has been found7,11–15to produce regularly space
sharp minima in the resistivity versus field curve. A pinnin
induced reconfiguration of the vortex lattice has be
observed14 in a thin-film superconductor with a rectangul
array of magnetic dots. Some of these effects have been s
ied theoretically, using analytic16 and numerical17–22 meth-
ods. Experimental realizations of a system of interact
‘‘particles’’ in the presence of an external periodic potent
are also obtained in colloidal suspensions in interfering la
fields,23 and in periodic arrays of optical traps.24

In this paper, we have used analytic and numerical me
ods to analyze the zero-temperature structure of vortex ar
in the presence of periodic pinning. We have also carried
a numerical study of the zero-temperatureequilibrium mag-
netization of a superconducting film with a square array
pinning centers as a function of the applied field. In Sec.
we consider the ground states of a vortex system in a sq
array of pinning centers for fillings less than unity. We loo
at a class of structures that are Bravais lattices with
vortex per basis if the fillingn is of the form 1/q, and withp
vortices per basis ifn5p/q (p and q are integers greate
than unity, withp,q). The structure with the lowest energ
in this class can be obtained rather easily. We find that
‘‘ground-state’’ structure obtained this way matches tho
obtained from experiments9 and simulations17,20 for a large
number of simple fractional values ofn. The results obtained
in this section can also be used to predict the ground-s
structures for 1,n,2. In Sec. III, we consider the ground
state structures for fillings greater than 2. In these calcu
tions, we use simple geometric arguments to arrive at
ground states. This analysis is performed under the assu
tion that the range of the intervortex interaction, which is
by the penetration depth, is much smaller than the spac
between the pinning sites. We show that the ground-s
structures obtained from this simple analysis match the o
obtained from simulated annealing. This analysis is exten
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to rectangular and triangular pin lattices in Sec. IV. In Sec
the zero-temperature equilibrium magnetization of a vor
system in a square array of pinning centers is obtained
first calculating the ground-state energy as a function of
magnetic induction and then finding the applied field fro
numerical differentiation of the data. The ground-state en
gies for different values of the magnetic induction are o
tained using a simulated annealing procedure. The calcul
B-H curve exhibits interesting commensurability effec
manifested as plateaus occurring at simple rational value
the filling fractionn. The main results of our study are sum
marized in Sec. VI.

II. GROUND STATES FOR A SQUARE PIN ARRAY
WITH FILLING RATIO LESS THAN 1

We consider a superconducting film that has a square
ray of pinning sites with lattice constantd. The magnetic
field is assumed to be perpendicular to the surface of
film. The ‘‘matching field’’ BF is then given by Bf
[F0 /d2, and the filling fractionn is given by n5B/Bf
5Bd2/F0 where B is the magnetic induction. We assum
that the pinning potential is much stronger than the interv
tex interaction, but is of extremely short range. The la
strength of the pinning potential implies that the vortic
must occupy pinning sites as long as the number of vort
does not exceed the number of pinning sites. We also ass
that a pinning site cannot accommodate more than one
tex. If the pinning centers in the film are microholes, th
this assumption amounts to the requirement25 that the radius
of each hole is close to two times the coherence lengthj of
the superconductor. These assumptions ensure that inters
vortices appear only when the filling fractionn is greater
than unity. The assumed short range of the pinning poten
can be justified if the defect diameter is small compared
the defect spacingd. Another assumption that we make
most of our calculations is that the intervortex interacti
falls off rapidly with distance. This is ensured if the penet
tion depthl is much smaller that the pin-lattice spacingd. In
our calculations, we take the ratiol/d to be 10. This value is
appropriate for the pin lattice of Ref. 9. We consider te
peratures that are low enough to neglect effects of depinn
and vortex-lattice melting. The problem of finding the stru
ture of the vortex system then reduces to locating the gro
state in the presence of the pinning potential.

Consider now fillings of the formn51/q, q being an
integer greater than 1. Let us look at Bravais lattices that
be formed for a specificn by distributing the vortices on the
square pin lattice with one vortex per basis. The motivat
for considering such lattices is that this will automatica
ensure that there is no shear of the vortices with respec
the pin lattice, since the forces on a vortex due to ot
vortices will add up exactly to zero. The unit-cell area
these structures has to beq.d2. So the possible unit cells ca
be obtained by factorizingq into products of the formr .s (r
and s are integers!, arranging the vortices at the corners
rectangles of dimensionrd3sd, and then sliding the paralle
sides relative to each other. This procedure produces a l
number of structures depending on the value ofn and we
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have to pick the one that minimizes the energy. For sm
values ofq, this can be done by hand, but asq becomes large
and highly factorizable, the number of possible structu
increases rapidly. In such cases, we have resorted to com
ers to generate these structures and compare their ener

The structures so obtained for fillings 1/2 and 1/4 ma
those found in the imaging experiment.9 Also for fillings 1/2,
1/3, 1/4, 1/5, 1/8, 1/9, 1/10, and 1/15, we find the sa
structures as those obtained by solving the ‘‘greedy latti
gas model’’26 exactly. This is understandable because wh
the intervortex interaction falls off rapidly as the distance
increased above the defect spacingd, the ground state can b
attained by finding the lattice thatmaximizes the shortes
distance between vortex pairs. If two structures have the
same value and number of shortest distances, then the
shortest distance should be maximized, and so on. For
ings 1/2, 1/3, 1/4, and 1/5, our analysis also yields the sa
structures as those found in the largeUe (Ue is the energy of
on-site repulsion between two electrons! limit of the neutral
Falicov-Kimball model.27 In Figs. 1~a!–1~c!, we show the
structures so obtained for a few fillings of the formn
51/q. The ground-state structure shown in Fig. 1~b! for n
51/5 is different from that found in Ref. 18 from a simulate
annealing calculation. This difference is probably due to

FIG. 1. The ground-state structures for a few filling fractio
n,1. The different filling fractions are~a! 1/2, ~b! 1/5, ~c! 1/9, ~d!
2/3, ~e! 3/5, and~f! 2/7. The dots in the figures represent the pinni
sites and the circles represent the vortices.
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use of a different~logarithmic! intervortex potential in Ref.
18.

Let us now compare the energies of the nearest and n
nearest neighbors in one of these lattices. The interac
energy between two vortices separated by a distancer is
given by the expression

U~r !5
F0

2t

8p2l2
K0S r

l D , ~1!

whereK0 is the zeroth-order Hankel function of imagina
argument andt is the film thickness. Forn51/2, the nearest-
neighbor distance isA2d and the next-nearest-neighbor di
tance is 2d. So the interaction energies are, to within a co
stant prefactor, given by

Un}K0SA2d

l D 50.231026,

Unn}K0S 2d

l D50.6310210.

One can see here that there is an orders-of-magnitude d
ence in these energies which cannot be compensated by
ferences arising from interactions with more distant nei
bors. This difference is going to be more prominent at low
densities. This tells us that the maximization of the shor
intervortex distance in a lattice for a given filling would lea
to the ground states, provided the lattice spacing is la
compared to the penetration depth of the film. This, in fact
exactly the definition of the ‘‘greedy lattice gas.’’ Howeve
one has to be cautious about this method because, as no
Ref. 26, the structures can be strongly dependent on the
of the potential in certain ranges ofn and we can even hav
aperiodic structures as ground states. The ground-state s
tures shown here have been cross checked with simula
to ensure that they are indeed the lowest-energy config
tions. To give an example of a case in which this treatm
does not lead to the true ground state, we found that
filling 1/16, the energy per vortex for the structure with min
mum energy obtained this way was greater than that for
ing 1/15, implying that the structure obtained forn51/16
was not the ground state.

When the filling fraction is of the formp/q with p not
equal to 1, one can look for ground states in a subse
structures where the unit cell has the sizeqd2 with p vortices
in a basis. We have shown in Figs. 1~d!–1~f! some of the
ground-state structures obtained this way. These struct
match those obtained from our simulated annealing calc
tion. These ground states show the ‘‘stripe’’ structure p
dicted by Watson26 and Kennedy27 in appropriate density
ranges.

III. GROUND STATES FOR A SQUARE PIN ARRAY
WITH FILLING RATIO GREATER THAN 2

If n is greater that 1 but smaller than 2, then the grou
state structures are similar to the ones for the case ofn less
than 1. The only difference is that the pinning sites are
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occupied and the centers of the square unit cells of the
lattice now act as new pinning centers for interstitial vor
ces. But things look different when the filling goes above t
valuen52. For such values ofn, we can no longer place th
interstitial vortices at the centers of the squares and look
simple structures obtained this way. Also, we now have
start looking into the stability of the structures since t
square symmetry would not be present.

A. The ground state for nÄ5Õ2

Here we are faced with the task of placing more than o
vortex in a square. Before going to the problem of findi
the ground state forn55/2, let us ask a more basic questio
given a single unit cell of the square pin lattice with ea
corner occupied by a vortex, how can we arrange two m
vortices inside this square so as to minimize the ener
Since ‘‘greedy lattice gas’’ has been a good approximat
for the previous cases, we try to tackle this problem by us
the ‘‘maximizing the shortest distance’’ method. In order
stabilize an interstitial vortex by maximizing the shortest d
tance, its distance from at least three nearest vortices mu
the shortest distance. It is also required that these vort
must be spread in such a way that if we draw straight lin
from the vortex in question to these neighbors, the ang
formed by adjacent lines must be less than 180°. The pr
of this statement is given in the Appendix.

It can be seen from the symmetry of the problem that
have to place the two vortices on the lines joining the cen
of the sides to meet the condition mentioned above. T
leaves us with only two possible ways of doing it, which a
shown in Fig. 2. In Fig. 2~a! the shortest distanceDma can be
obtained by solving the equation

1

4
~d2Dma!

21
d2

4
5Dma

2 . ~2!

On solving this equation, we getAB5BC5BE5Dma

5(A721)d/3. In Fig. 2~b! the vorticesA8,B8, andC8 form

FIG. 2. Putting two vortices in a square. The configuration in~a!
is the global energy minimum, and the configuration in~b! can at
best be a local minimum of the energy. Angles areu515° andf
524.49°. The square is drawn for easy visualization and the do
lines are the bisectors of the sides. Note that there is already
pinned vortex at each of the corners of the square. Distances
AB5BC5BE5Dma andA8B85B8C85B8E85Dmb .
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an equilateral triangle. Thus the nearest-neighbor dista
A8B85B8C85B8E8 is

Dmb5sec~15°!
d

2
. ~3!

The anglef in Fig. 2~a! is 24.49°, and the angleu in Fig.
2~b! is 15°. The interaction energies corresponding to th
two distances ford/l510 are

UAB}K0SA721

3l
dD .2.231023,

UA8B8}K0S sec~15°!

2l
dD.3.031023.

From comparing these two energies it is clear that Fig. 2~a! is
the global minimum, whereas the configuration of Fig. 2~b!
can at best be a local minimum.

Coming back to then55/2 case, we now have to build u
the lattice with an equal number of two types of square
one with two interstitial vortices and the other with one i
terstitial vortex. Note that here we have neglected structu
that have three or more interstitial vortices inside a squ
unit cell because such structures would drastically br
down the nearest-neighbor distance. Let us now look at
possible units cells of size 2d32d that can be made out o
these two types of squares. These are shown in Fig. 3. If
constructs the lattice with these unit cells, the configurat
of Fig. 3~b! offers the least number of next-nearest neig
bors, the number of nearest neighbors being the same i
the cases. So one can expect Fig. 3~b! to be the ground-state

FIG. 3. Possible 2d32d unit cells forn55/2. The unit cell~a!
is the lowest-energy configuration ford/l510. For much larger
values ofd/l, the unit cell with the lowest energy will be the one
~b!.
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unit cell, at least for large values ofd/l. However, the unit
cell of Fig. 3~a! is preferred ifd/l is not very large. This can
be understood in the following way: the advantage that F
3~b! has over Fig. 3~a! is that it has only half the number o
next-nearest neighbors~interactions like that between vorti
cesm andn) compared to that of Fig. 3~a!. But this is done
at the cost of bringing in interactions such as those betw
vortex pairs (p,q) and (p,t) for every ‘‘gain’’ of a next-
nearest-neighbor interaction. The energies of these two in
actions ford/l510 are found to be quite close. These en
gies are

Umn}K0~r mn /l!.3.231024,

Upq}K0~r pq /l!.1.931024,

wherer mn andr pq are the distances between vorticesm and
n, and p and q in Fig. 3, respectively. It is clear from this
comparison that the unit cell of Fig. 3~a! would be preferred
for d/l510.

The ratio of interaction energies of the next-nearest a
the nearest neighbors is 0.07 for this lattice whend/l510.
This energy difference is appreciable here, so that we
expect that the unit cell at which we arrived is the corre
one. Note that any net force that might be present on on
the interstitial vortices due to the asymmetry in the struct
can be compensated by extremely small displacements f
the positions obtained from the ‘‘maximization of the sho
est distance’’ method.

B. The ground state for nÄ3

When the filling fraction equals 3, we have to build up t
lattice using blocks of the type of Fig. 2~a!. Again, looking at
unit cells of size 2d32d or smaller, we have the configura
tions shown in Fig. 4 to consider. Here it is easy to see t
the unit cell of Fig. 4~b! is preferred over the others. This
because it is the configuration that maximizes the minim
distance between any two vortices in different squares,
distances between vortices within one square being the s
in all the configurations. Again comparing the nearest int
action and the next-nearest one, we have

Un}K0~r sp /l!.2.231023,

Unn}K0~r pq /l!.1.931024.

There is an appreciable difference between these two val
and hence, the ground state at which we have arrived
reasonable. When the filling lies between 2 and 3, one
safely assume that the ground-state structure can be bui
using squares of the type of Fig. 2~a!, and squares that hav
one vortex at the center. In fact we make use of this in
simulations to arrive at the ground states, as describe
Sec. V.

C. The ground state for nÄ4

Here we have to place three interstitial vortices in o
square. This is nontrivial since even if we ensure that
shortest distance is maximized in one square, two vortice
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nearby squares may be closer to each other than the sho
distance within a square when we create the lattice. Note
we did not come across this problem in then55/2 or n53
fillings. To illustrate this problem, we show in Fig. 5~a! a
single cell of a square lattice with three interstitial vortice
which may very well be a local minimum configuration. B
if we try to build the lattice using this cell, we cannot do
without bringing the vortices in nearby squares closer th
the minimum distance in an individual cell. So what we ne
to do is to look for a pattern that will include vortices
different squares while doing the minimization of the sho
est distance. We can solve this problem trigonometrica
Consider Fig. 6. The solution that we are looking for can

FIG. 4. Possible 2d32d unit cells forn53. Configuration~b!
can be easily seen to offer the maximum next-nearest-neighbor
tance, the nearest-neighbor distances being the same and eq
number in each case.

FIG. 5. Two possible ways of arranging three vortices in
square so as to maximize the shortest distance. The configurati
~a! offers the best arrangement if looked in isolation, but the c
figuration in~b! wins out when one has to construct a lattice of t
unit cells. The anglesu515° andw560°.
test
at

,

n
d

-
y.
e

obtained by solving the equations

AB5BC5CA5Ds , ~4!

CB85AC95AP5Ds . ~5!

Note that here we have assumed a unit-cell sized3d. On
solving these equations, we obtain the unit cell shown in F
5~b!. In the figure, the angleu equals 15° and the anglew is
60°. In this lattice, the shortest distance isDs
5sec(15°)d/2 and the next shortest distance isDns

53d sec(15°)/(4A2).
This simple solution may not be the correct one if t

lattice spacing is not large enough. For example, ifd/l
510, as we have been assuming when comparing ener
then the nearest- and next-nearest-neighbor interaction e
gies turn out to be really close. Hence we cannot rule out
possibility of the lattice arranging in such a way that t
shortest distance is reduced so as to decrease the numb
nearest or next-nearest neighbors. The relevant energie
d/l510 are

K0S Ds

l D.3.131023,

K0S Dns

l D.2.131023.

So the ground state obtained above is guaranteed to be
correct one only for much larger values ofd/l. The ground
states we have obtained forn55/2 andn53 match with the
images from experiments9 and also the results o
simulations.17 But for n54, the structures found in exper
ments and simulations are different from the one shown

is-
l in

in
-

FIG. 6. The distances one has to equate when maximizing
shortest distance forn54, taking into consideration distances b
tween vortices in neighboring squares. Note that the unit-cell s
here is one square unit.
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Figs. 5~b! and 6. This is expected, since in the experiment
value of the ratiod/l was close to 10. Our simulation wit
d/l510 gives the ground-state structure shown in Fig. 7~a!,
which is similar to the one obtained in experiment.9 In our
simulations with very large values ofd/l, we obtain struc-
tures similar to that in Fig. 6. The simulation result ford/l
550 is shown in Fig. 7~b!, which matches well with the
predicted structure. It is to be noted that the simulation re
was obtained by starting the system near the expected gr
state. So the claim is that it offers at least a local minimum
the interaction energy. The simulations were carried out
different system sizes from 2d32d to 10d310d to rule out
any dependence of the results on the boundary condition

IV. GROUND STATES FOR RECTANGULAR
AND TRIANGULAR PIN ARRAYS

One can extend this type of analysis to pinning arra
with other symmetries for finding the least energy structu
for simple filling fractions. Let us first consider the case o
rectangular array of pinning sites with a pinning unit cell
dimensionsl 3b, where we takel to be the longer side of the
rectangle. We shall consider here only the cases in which
filling is greater than 1. In the absence of square symmetr
is obvious that the ground-state structure will depend
only on the penetration depthl, but also on the ratiol /b. In
the following analysis, we shall always assume thatl is
much smaller thanb, the shorter side of the basic rectangu
pinning cell. When the filling is 2, for values ofl /b less than
A3, the ground state is one in which each interstitial vor
is at the center of the rectangle, since this ensures tha
shortest distance is maximized@see Fig. 8~b!#. But when the
aspect ratio exceedsA3 and the interstitial vortices ar
placed at the centers of the rectangles, the distance betw
two interstitial vortices in neighboring cells would be shor
than that between an interstitial vortex and the closest pin
vortex. This would lead to a displacement of the interstit
vortices sideways from the center, along the bisector of
shorter sides of the rectangle, to maximize the shortest
tance. The resulting structure is shown in Fig. 8~a!. The dis-
placement of the vortex from the center is given by

FIG. 7. The ground state forn54, obtained by simulated an
nealing when the ratios of the penetration depth to the pin-lat
spacing are~a! 10 and~b! 50. The dark dots denote the pinning sit
and the axis labels are in units of the penetration depth.
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2 l 1A4l 229b2

6
. ~6!

It is worth noting that since the vortex in the center wou
be moving towards two of the pinned vortices, and aw
from only one interstitial vortex per unit cell, the displac
ment will approach the value given above only when t
ratio l /b is appreciably large and in the limit of small pen
etration depth compared to the sides of the rectangle.
example, we have found in our simulations that even wh
the ratio l /b is 2, the ground state forb/l515 is one in
which the interstitial vortex is very close to the cente
whereas forl /b53 andb/l515, the ground-state structur
is quite close to the one obtained from maximizing the sho
est distance. Also, if the ratiol /b becomes too large, the
analysis will have to include more than two of the interstit
vortices, since now the solution such as that shown in F
8~a! can lead to two vortices being closer in the next-near
cells or ones even further apart.

In trying to arrive at the lowest-energy structures for fi
ings 5/2 and 3, it is important to determine how one c
accommodate two vortices in a rectangular cell with t
shortest distance being maximized. There are two poss
minima that one has to consider: one in which the vortic
are arranged along the line dividing the shorter sides,
one in which they are arranged along the line dividing t
longer sides, as shown in Figs. 9~a! and 9~b!, respectively.
The shortest distance in each case is given by

Ds15
A4l 213b22 l

3
, ~7!

Ds25
A4b213l 22b

3
. ~8!

If one considers the distances within the cell, the configu
tion of Fig. 9~b! gives the lowest energy. But for large value
of the ratio l /b, this configuration is disfavored since it a
lows the vortices in one rectangle to get close to those i
neighboring one. Also, forl /b.2, the interstitial vortices
‘‘spill over’’ into the next cell, since the distanceDs2 be-

e

FIG. 8. The unit cells of the ground state, obtained by maxim
ing the shortest distance, when the filling is 2 for a rectangular a
of pinning sites.~a! The unit cell when the aspect ratio is great
thanA3. The interstitial vortex is displaced horizontally from th
center of the rectangle by distanceDs . In the figure, distances ar
AB5AC5AD5BF5BE. ~b! The ground-state unit cell when th
aspect ratio is less thanA3. The interstitial vortex is at the center o
the rectangle.
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comes greater thanb. So, one has to work out the structur
for fillings 5/2 and 3 case by case. For fillings between 2 a
3, one has to choose the appropriate number of two-vo
rectangles of the right kind and single-vortex ones and
range them so as to maximize the shortest distance appe
in the structure. We have looked at the 232 unit cells pos-
sible for filling 5/2 for two values of the aspect ratio,l /b
54 and l /b55/4. The unit cells that provide the large
minimum distance are shown in Fig. 10. Note that wh
l /b54, the vortices are arranged parallel to the longer s
and in the other case, parallel to the shorter side. Also w
l /b55/4, the vortex in the single-vortex rectangular cell
not located at the center, but is slightly displaced sidew
along the bisector of the shorter sides to facilitate the ma
mization of the second shortest distance involved. Grou
state structures obtained from simulations for different v
ues ofl /b and large values ofb/l are consistent with thes
predictions. One should again keep in mind that this sor
analysis cannot work if the aspect ratio is too large, sin
then the distances between vortices in next-nearest or fu
neighbor cells will become important.

For filling equal to 3, the lowest-energy structures o
tained by considering 232 unit cells for two values of the
aspect ratio, 2 and 5/4, are shown in Fig. 11. Here too,
large values of the aspect ratio, the structure is compose
rectangular cells in which the interstitial vortices are align
parallel to the longer side@Fig. 11~a!#, whereas when the
aspect ratio is smaller, the structure is made up of an a
nating arrangement of rectangular cells of both types@Fig.
11~b!#. The simulated annealing results for similar values
the aspect ratio yield the structures obtained from the ab
analysis.

Ground-state structures obtained by simulated annea
for a rectangular pin array withl /b52 and integral values o
n are reported in Ref. 19. In that study, the intervortex int
action was assumed to depend logarithmically on the in
vortex distance. The ground-state structure found in Ref
for n52 is similar to that predicted by our analysis. How
ever, the structure found there forn53 is quite different

FIG. 9. The two possible ways in which the shortest dista
can be maximized when there are two vortices in a rectangular
~a! In this case the vortices are placed on the line that divides
shorter sides of the rectangle. Distances areAB5AC5AD5DE
5Ds1. ~b! Here the vortices are placed parallel to the shorter si
and distances areA8B5A8E5A8D85CD85Ds2. For l /b less
than 2, the configuration in~b! leads to a larger shortest distan
~within the cell! than the one in~a!. If l /b is greater than 2, then th
distanceDs2 becomes greater thanb and the vortices spill over into
the next cell.
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from the ones obtained from our analysis. This is anot
example of the importance of the detailed nature of the
ervortex interaction in determining the structure of t
ground state.

For a triangular array of pinning sites, it is easy to see t
when the filling is greater than 1 and less than 3, the in
stitial vortices will be placed on the centroids of the triang
in the limit for which one can safely apply the method
maximization of the shortest distance. So the ground st
whenn is between 1 and 3 will be made up of parallelogra
cells of the form shown in Fig. 12. These unit cells mat
well with the results of molecular-dynamics simulations.17,20

V. EQUILIBRIUM MAGNETIZATION
OF THE GROUND STATES

In this section, we describe a calculation of the ze
temperature, equilibrium magnetization of a thin-film sup
conductor in the presence of a square array of pinning s
The region in theB-H plain in which we are interested is tha
just aboveHc1, when the flux tubes start entering the samp
The idea is to find the free energyF of the ground state as
function of the magnetic inductionB, and then obtain the
applied magnetic fieldH by taking a derivative of the free
energy with respect toB. Since we are considering the zer
temperature case, the free energy is just the internal en
of the flux lattice. Since we are looking for a nearly contin
ous variation of the internal energy for taking the derivativ
we need to locate the ground states for filling fractions se

e
ll.
e

s

FIG. 10. The unit cells forn55/2 for a rectangular array o
pinning sites.~a! The unit cell when the aspect ratio is 4. Distanc
areAB5AC5AE5BD. ~b! The unit cell when the aspect ratio i
5/4. Here PV5PU5PQ5QW5QS5Ds2 and QR5RS5RT.
When this structure is repeated periodically, the ‘‘image’’ of t
vortex atP would be at the same distanceQR from R. This would
ensure the stability of the vortex atR.
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rated by small intervals. This would be difficult to do an
lytically, since the unit cells for some filling fractions can b
arbitrarily large. Also, asn becomes large, the simple proc
dure of maximization of the shortest distance is not going
yield the correct ground-state structures. So we have reso
to simulations to determine the ground states. In particu
we have used the simulated annealing technique to locate
global minima~or at least low-lying local minima close in

FIG. 11. Unit cells forn53 for a rectangular array of pins.~a!
The unit cell when the aspect ratio is 2. Distances areAB5AC
5AE5BD5BF. ~b! The unit cell for the same filling but for an
aspect ratio 5/4. Here distances arePQ5PS5PT5QR5QU
5Ds2 andTV5UV5VW5WY5WX5Ds1.

FIG. 12. Basic building blocks for generating ground states
triangular pinning arrays when the filling is between 1 and 3.~a!
When there is a single interstitial vortex in a parallelogram,
shortest distance can be maximized by placing it at one of the
centroids of the triangles involved. Distances areAB5AD5AC
5a/A3, wherea is the length of the side of a pinning cell.~b!
When two vortices are to be placed in a single pin cell, they hav
be at the two centroids.
o
ed
r,

the

energy to the global ones! of the part of the internal energ
associated with intervortex interactions.

The Helmholtz free energy per unit volume of the sup
conductor at zero temperature in the presence of the pin
sites is

Fs~n!5
ne l

d2
1En2

nep

d2
, ~9!

where the first term is the line energy, the second term is
interaction energy, and the third term is the pinning ener
Here,e l is the line energy per unit length,ep is the pinning
energy per unit length, andEn is the interaction energy pe
unit volume for filling fractionn. We note here that the pin
ning energy increases linearly withn until n becomes 1 and
then remains constant, since multiple occupation of a pinn
center is not allowed. Further, for simplicity, we express t
pinning energy as

ep5me l , ~10!

wherem is a positive number whose magnitude depends
the nature of pinning. The interaction part of the free ener
En , is the computational input. Once we know the free e
ergy, we can compute the applied magnetic fieldH using the
relation

]Fs

]B
5

H

4p
. ~11!

Using the standard expression1 for e l and taking the loga-
rithm of the Ginzburg-Landau number to be equal to 2,
get the following expression for the applied field as a fun
tion of the filling fraction:

H5
F0

2pl2
$12m@12Q~n21!#%1

]En8

]n
. ~12!

HereEn8 is given by the expression

En85
F0

2pl2N
(
i . j

K0~r i j /l!, ~13!

whereN is the number of basic pinning squares in the syst
and r i j is the separation between vorticesi and j in the
ground state for the filling fractionn.

The size of the systems we simulated varies fromd
32d to 8d38d. In all cases, we used periodic bounda
conditions to minimize surface effects. So the minimum d
ference between two consecutive filling fractions wasDn
51/64. The ratiod/l was taken to be 10, as in our previou
analysis. In order to save computation time, the vortices w
allowed to stay only at the pinning sites when the filling w
less than 1. For fillings between 1 and 2, every pinning s
was occupied by a vortex which was never moved and
extra ones were allowed to move near the centers of the b
pinning squares. When the filling was greater that 2 and
than 3, the vortex configurations were constructed using
sic units of squares containing one vortex at its center
squares containing two vortices placed such that the sho

r
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distance within a square is maximized@as in Fig. 2~a!#. These
units were then moved around and twisted while cooling
arrive at the minimum-energy states. This procedure hel
us to track low-lying minima faster than if we allowed vo
tices to move freely. Once the basic structure was thus
tained, the vortices were allowed to move freely during
second cooling schedule starting from a lower temperatur
obtain the lowest-energy structure. In Fig. 13 we show so
of the ground-state structures we have obtained this way
fillings between 2 and 3. For fillings 5/2 and 3, we find th
the structures match those obtained in experiments,9 as well
as in our analysis using maximization of the shortest d
tance. The structures forn59/4 andn511/4 may not be the
actual ground states, either due to the smallness of the
cell of our simulation or the presence of many nearly deg
erate local minima.

In Fig. 14 we plot the ground-state energies obtained fr
the simulation for different fillings. The simulation unit ce
was 8d38d and the energies were computed for fillin
1/64 to 3. The upper curve shows the results obtained in
presence of the pinning sites and the lower curve is the
ergy of the triangular lattice for the same density of vortic
Note that we have not included the pinning energy in
plot. This would bring the upper curve below the curve f
the pin-free case.

From the energy versus filling fraction data, one can fi
the applied field using Eq.~11! and then compute the mag
netizationM using the relation

B5H14pM . ~14!

In Fig. 15 we have plottedB versusH in the entire range of
filling for which simulations were carried out, fromn50 to

FIG. 13. The ground states for~a! n59/4, ~b! n55/2, ~c! n
511/4, and~d! n53 obtained by simulated annealing, as discus
in the text. The unit-cell size is 4d34d. The dark dots denote th
pinning sites and the circles denote the vortices. The axis labels
in units of the penetration depth.
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n53. Figures 16 and 17 show magnified versions of t
plot in the regions between filling fractions 0 and 1, a
between 2 and 3, respectively. Note that we have not exp
itly included the pinning energy term in our analysis. Th
term would just add a constant contribution toH for fillings
up to 1. The features of the curve fromn51 to n52 are the
same as those in the interval betweenn50 andn51. This is
due to the fact that the ground-state structures are simila
the two regions~see Sec. III!. The B-H plot shows flat re-
gions at values ofB corresponding to fillings 1/8, 1/5, 1/4
1/2, 3/4, 4/5, 7/8, 1, 9/8, 6/5, 5/4, 3/2, 7/4, 9/5, and 2 in t
filling fraction range between 0 and 2. Also, in the range on
between 2 and 3, there are roughly two plateaus, appea
nearn52.3 andn52.6.

The observed values of the filling fractions betweenn
50 andn51 at which the plateaus occur indicate that the
values ofn correspond to fillings for which the introductio
of a new vortex into the system leads to the appearance

d

re

FIG. 14. The energy of the vortex lattice in the presence o
square array of pinning sites~upper dashed curve!. The energy of
the triangular vortex lattice in the absence of pinning is also sho
for comparison~lower solid curve!. The system size is 8d38d. The
abscissa is the filling fractionn and the ordinate is the total energ
per unit thickness in units ofF0

2/(8p2l2).

FIG. 15. The dependence of the magnetic inductionB on the
applied fieldH in the entire region of our simulation. A number o
plateaus can be seen at points corresponding to simple rationa
ing fractions mentioned in the text. Only the vertical lines cor
spond to the data points obtained from our calculation; the do
lines are guides to the eye. BothB andH have been scaled by th
matching fieldBf .
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shorter distance than those existing in the lattice or in its d
~i.e., the lattice obtained by replacing particles by holes,
vice versa!.26 This makes sense because the introduction
this shorter distance introduces a larger energy scale, lea
to a discontinuous change in the derivative of the ene
with respect to the fillingn. In the simulations, we have no
scanned very small intervals ofn. Also, for some of the fill-
ings, the ground state may not have been obtained in
simulated annealing calculation. For these reasons, we
not say anything definite about the true nature of theB-H
curve. It is possible that this curve has plateaus and disc
tinuities occurring at all scales~e.g., at all rational values o
n). The noisy nature of theB-H plot in the range for which
n lies between 2 and 3~see Fig. 17! is also due to these
difficulties. However, this plot shows clear signatures of t
plateaus that appear nearn52.3 andn52.6. These can be
understood to happen when first there is an occurrenc
squares containing two vortices coming together next to e
other diagonally@as in Fig. 3~a!#, and again when they hav
to be next to each other with a common side@as in Figs. 3~b!
and 3~c!#, as the value ofn increases from 2 to 3.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have reported the results of an anal
calculation of the lowest-energy states of a vortex system

FIG. 16. Expanded view of the plot of Fig. 15 in the regio
betweenn5B/Bf50 andn51. One can see plateaus appearing
n51/4, n51/2, andn53/4. The dark dots are the data points. T
light dotted line is drawn to guide the eye.

FIG. 17. Expanded view of the plot of Fig. 15 in the regio
betweenn52 andn53. One can see plateaus at fillingsn.2.3 and
n.2.6, as indicated by the arrows. The dark dots are the actual
points and the light dotted line is shown to guide the eye.
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the presence of a periodic array of strong pinning centers.
have considered several different lattice structures of the
array and a large number of filling fractions in the ran
between zero and 4. In our zero-temperature analysis,
have assumed that each pinning center traps a vortex if
number of vortices is less than or equal to the number
pinning centers, but a pinning center cannot trap more t
one vortex. The analytic calculations are based on the p
ciple of maximization of the shortest intervortex distanc
We have argued that this principle leads to the exact gro
states when the spacing of the defect lattice is large c
pared to the range of the intervortex interaction set by
value of the penetration depth~in our calculations, we as
sumed that the spacing of the pin lattice is ten times
penetration depth!. This principle has been used, in comb
nation with simple geometric considerations, to obtain
ground states for several values of the filling fractionn. The
ground-state structures so obtained are found to be iden
to those found in imaging experiments9 and in earlier
simulations.17,20 We have also carried out simulated anne
ing calculations of the ground states in order to test some
the predictions of the analytic approach. In all cases,
found that the analytic results agree with those of our
merical calculations.

We have also described the results of a numerical ca
lation of the equilibrium magnetic inductionB and magneti-
zation M of a planar superconductor with a square array
pinning centers as functions of the externally applied fieldH.
We show that the interplay between the lattice spacing of
pin array and the intervortex separation set by the value oB
leads to interesting commensurability effects, appearing
plateaus and discontinuities in theB vs H plot at simple
rational values of the filling fractionn. Anomalies in the
irreversiblemagnetization of thin-film superconductors wi
periodic arrays of pinning centers have been observed at
tain integral values ofn in experiments3,4 and simulations.17

The presence of a periodic array of pins is also expected16 to
produce anomalies in the equilibrium magnetization of
high-temperature vortex liquid at small integral values ofn.
Our results show that these commensurability effects
more pronounced in the field dependence of the equilibri
magnetization and magnetic induction of such systems in
low-temperature vortex-solid regime. Experimental inves
gations of these effects would be most welcome.

APPENDIX: CONDITION FOR MAXIMIZING
THE SHORTEST DISTANCE

Given a particle fixed at some point in a plane, the pro
lem is how to place three other particles around the first
in such a way that if we try to move the first particle from i
position, it will get closer to at least one of the three p
ticles. The solution is as follows. If we draw straight line
from the particle that we want to move to the other particl
then each angle between adjacent lines must be less
180°. In other words, it should not be possible to draw
straight line through the particle in question in such a w
that all the other three particles lie on one side of the lin

Let the particle that we want to move be atP0 ~see Fig.
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18!. Let us place two particles atP1 and P2, anywhere on
the plane. This can be done since one of the angles betw
any two lines will always be less than or equal to 180°.
Fig. 18,AE andCF are the tangents to the circles centered
P1 and P2 and passing through pointP0. The presence o
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regionBP0D of the plane and outside this region.

When the third particle is in the regionBP0D ~point P3 in
Fig. 18!, it is not possible for particleP0 to move from its
position without decreasing the distance to any one of
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