1,386 research outputs found

    Computational estimate visualisation and evaluation of agent classified rules learning system

    Get PDF
    Student modelling and agent classified rules learning as applied in the development of the intelligent Preassessment System has been presented in [10],[11]. In this paper, we now demystify the theory behind the development of the pre-assessment system followed by some computational experimentation and graph visualisation of the agent classified rules learning algorithm in the estimation and prediction of classified rules. In addition, we present some preliminary results of the pre-assessment system evaluation. From the results, it is gathered that the system has performed according to its design specification

    A system of serial computation for classified rules prediction in non-regular ontology trees

    Get PDF
    Objects or structures that are regular take uniform dimensions. Based on the concepts of regular models, our previous research work has developed a system of a regular ontology that models learning structures in a multiagent system for uniform pre-assessments in a learning environment. This regular ontology has led to the modelling of a classified rules learning algorithm that predicts the actual number of rules needed for inductive learning processes and decision making in a multiagent system. But not all processes or models are regular. Thus this paper presents a system of polynomial equation that can estimate and predict the required number of rules of a non-regular ontology model given some defined parameters

    An agent based approach for improvised explosive device detection, public alertness and safety

    Get PDF
    One of the security challenges faced by our contemporary world is terror threats and attacks, and this is no doubt posing potential threats to lives, properties and businesses all around us; affecting the way we live and also travel. Terror attacks have been perpetrated in diverse ways whether from organized terror networks through coordinated attacks or by some lone individuals such that it is now a major concern to people and government. Indeed, there are numerous forms of terror attacks. In this proposal, we look at how the explosive substance kind of threats can be perceived and taken care of prior to potential attacks using intelligent agent systems requirement analysis. Thus, the paper demonstrates using an agent-oriented system analysis and design methodology to decompose. Through defined percepts, goals and plans, agents possess capabilities to observe and perform actions. This proposal demonstrates: how agents can be situated in our cities, goal refinement for agents in the detection and rescue of potential terror attacks, and inter-agent communication for the prevention of chemical terror attack

    The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World

    Get PDF
    Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (∼432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (ΔO2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA

    Mass transfer in eccentric binaries: the new Oil-on-Water SPH technique

    Full text link
    To measure the onset of mass transfer in eccentric binaries we have developed a two-phase SPH technique. Mass transfer is important in the evolution of close binaries, and a key issue is to determine the separation at which mass transfer begins. The circular case is well understood and can be treated through the use of the Roche formalism. To treat the eccentric case we use a newly-developed two phase system. The body of the donor star is made up from high-mass "water" particles, whilst the atmosphere is modelled with low-mass "oil" particles. Both sets of particles take part fully in SPH interactions. To test the technique we model circular mass-transfer binaries containing a 0.6 Msun donor star and a 1 Msun white dwarf; such binaries are thought to form cataclysmic variable (CV) systems. We find that we can reproduce a reasonable CV mass-transfer rate, and that our extended atmosphere gives a separation that is too large by aproximately 16%, although its pressure scale height is considerably exaggerated. We use the technique to measure the semi-major axis required for the onset of mass transfer in binaries with a mass ratio of q=0.6 and a range of eccentricities. Comparing to the value obtained by considering the instantaneous Roche lobe at pericentre we find that the radius of the star required for mass transfer to begin decreases systematically with increasing eccentricity.Comment: 9 pages, 8 figures, accepted by MNRA

    The quiescent light curve and evolutionary state of GRO J1655-40

    Full text link
    We present ellipsoidal light-curve fits to the quiescent B, V, R and I light curves of GRO J1655-40 (Nova Scorpii 1994). The fits are based on a simple model consisting of a Roche-lobe filling secondary and an accretion disc around the black-hole primary. Unlike previous studies, no assumptions are made about the interstellar extinction or the distance to the source; instead these are determined self-consistently from the observed light curves. In order to obtain tighter limits on the model parameters, we used the distance determination from the kinematics of the radio jet as an additional constraint. We obtain a value for the extinction that is lower than was assumed previously; this leads to lower masses for both the black hole and the secondary star of 5.4 +/- 0.3 Msun and 1.45 +/- 0.35 Msun, respectively. The errors in the determination of the model parameters are dominated by systematic errors, in particular due to uncertainties in the modeling of the disk structure and uncertainties in the atmosphere model for the chemically anomalous secondary in the system. A lower mass of the secondary naturally explains the transient nature of the system if it is either in a late case A or early case B mass-transfer phase.Comment: 12 pages, 4 figures, submitted to MNRA

    Dependence of direct neutron capture on nuclear-structure models

    Get PDF
    The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. We calculate direct neutron capture on the even-even isotopes 124−145^{124-145}Sn and 208−238^{208-238}Pb with energy levels, masses, and nuclear density distributions taken from different nuclear-structure models. The utilized structure models are a Hartree-Fock-Bogoliubov model, a relativistic mean field theory, and a macroscopic-microscopic model based on the finite-range droplet model and a folded-Yukawa single-particle potential. Due to the differences in the resulting neutron separation and level energies, the investigated models yield capture cross sections sometimes differing by orders of magnitude. This may also lead to differences in the predicted astrophysical r-process paths. Astrophysical implications are discussed.Comment: 25 pages including 12 figures, RevTeX, to appear in Phys. Rev.

    Long-Term Mortality after New-Onset Atrial Fibrillation in COVID-19

    Full text link
    Background: Atrial fibrillation (AF) has been described as a common cardiovascular manifestation in patients suffering from coronavirus disease 2019 (COVID-19) and has been suggested to be a potential risk factor for a poor clinical outcome. Methods: In this observational study, all patients hospitalized due to COVID-19 in 2020 in the Cantonal Hospital of Baden were included. We assessed clinical characteristics, in-hospital outcomes as well as long-term outcomes with a mean follow-up time of 278 (±90) days. Results: Amongst 646 patients diagnosed with COVID-19 (59% male, median age: 70 (IQR: 59-80)) in 2020, a total of 177 (27.4%) patients were transferred to the intermediate/intensive care unit (IMC/ICU), and 76 (11.8%) were invasively ventilated during their hospitalization. Ninety patients (13.9%) died. A total of 116 patients (18%) showed AF on admission of which 34 (29%) had new-onset AF. Patients with COVID-19 and newly diagnosed AF were more likely to require invasive ventilation (OR: 3.5; p = 0.01) but did not encounter an increased in-hospital mortality. Moreover, AF neither increased long-term mortality nor the number of rehospitalizations during follow-up after adjusting for confounders. Conclusions: In patients suffering from COVID-19, the new-onset of AF on admission was associated with an increased risk of invasive ventilation and transfer to the IMC/ICU but did not affect in-hospital or long-term mortality

    A general, three-dimensional fluid dynamics code for stars in binary systems

    Get PDF
    We describe the theory and implementation of a three-dimensional fluid dynamics code which we have developed for calculating the surface geometry and circulation currents in the secondaries of interacting binary systems. The main method is based on an Eulerian-Lagrangian scheme to solve the advective and force terms in Euler's equation. Surface normalised spherical polar coordinates are used to allow the accurate modelling of the surface of the star, as is necessary when free surfaces and irradiation effects are to be considered. The potential and its gradient are expressed as sums of Legendre polynomials, which allows a very efficient solution of Poisson's equation. The basic solution scheme, based on operator splitting, is outlined, and standard numerical tests are presented.Comment: 14 pages, 6 figures, MNRAS, accepted versio

    Red giant depletion in globular cluster cores

    Get PDF
    We investigate the observed depletion of red giants in the cores of post-core-collapse globular clusters. In particular, the evolutionary scenario we consider is a binary consisting of two low-mass stars which undergoes two common envelope phases. The first common envelope phase occurs when the primary is a red giant resulting in a helium white dwarf and main sequence star in a detached binary. The second common envelope phase occurs shortly after the secondary becomes a red giant. During the second common envelope phase the degenerate helium cores merge resulting in a core mass greater than the helium burning limit and the formation of a horizontal branch star. We show that this evolutionary route is enhanced in post-core-collapse clusters by stellar encounters. These encounters increase the population of binary secondaries which would have evolved onto the red giant branch in the recent past.Comment: 6 pages, 5 figures, submitted to MNRA
    • …
    corecore