To measure the onset of mass transfer in eccentric binaries we have developed
a two-phase SPH technique. Mass transfer is important in the evolution of close
binaries, and a key issue is to determine the separation at which mass transfer
begins. The circular case is well understood and can be treated through the use
of the Roche formalism. To treat the eccentric case we use a newly-developed
two phase system. The body of the donor star is made up from high-mass "water"
particles, whilst the atmosphere is modelled with low-mass "oil" particles.
Both sets of particles take part fully in SPH interactions. To test the
technique we model circular mass-transfer binaries containing a 0.6 Msun donor
star and a 1 Msun white dwarf; such binaries are thought to form cataclysmic
variable (CV) systems. We find that we can reproduce a reasonable CV
mass-transfer rate, and that our extended atmosphere gives a separation that is
too large by aproximately 16%, although its pressure scale height is
considerably exaggerated. We use the technique to measure the semi-major axis
required for the onset of mass transfer in binaries with a mass ratio of q=0.6
and a range of eccentricities. Comparing to the value obtained by considering
the instantaneous Roche lobe at pericentre we find that the radius of the star
required for mass transfer to begin decreases systematically with increasing
eccentricity.Comment: 9 pages, 8 figures, accepted by MNRA