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Abstract!Student modelling and agent classified rules 
learning as applied in the development of the intelligent Pre-
assessment System has been presented in [10],[11]. In this 
paper, we now demystify the theory behind the development 
of the pre-assessment system followed by some computa-
tional experimentation and graph visualisation of the agent 
classified rules learning algorithm in the estimation and 
prediction of classified rules. In addition, we present some 
preliminary results of the pre-assessment system evaluation. 
From the results, it is gathered that the system has per-
formed according to its design specification. 

Index Terms—agent learning, speech acts, ontology, classi-
fication, pre-assessment, student evaluation, visualisation, 
prediction, artificial intelligence 

I. INTRODUCTION 
Learning is change in the mental state of humans or 

machines after a sequence of some acquired experiences. 
Whether these experiences has caused any changes in the 
“knower” is left to be determined by some form of as-
sessment. Learning can be permanent or temporary — 
meaning that a concept or process can be learned or un-
learned. One way to determine the occurrence of learning 
is through some form of assessment in order to ascertain 
whether a concept is learned or has been unlearned.  

Like humans, machines have the ability to learn. But 
these abilities are inherent in the chosen type of learning 
technique. For machines to learn, models—mathematical 
or symbolic—are chosen or developed suitably to match 
or solve a learning problem. In this work we have used 
classification learning in a multiagent system (MAS) for 
pre-assessing and predicting students’ true state of cogni-
tion for appropriate leaning materials based on some 
measurable modelled parameters. The act of using exist-
ing knowledge, features or trained examples to make 
decision is classification learning. Aside having pre-
defined knowledge (or beliefs) for decision making, an 
agent acquires new knowledge either from self-perception 
of activities in its environment or through peer-to-peer 
communication by speech act performatives [1], [22] 
within a multiagent system. Both predefined knowledge 
and acquired knowledge amounts to a rise in agent 
knowledge base (KB) or belief base (BB). 

In this paper, we now present in details the theory be-
hind the Pre-assessment System design, the principles 
applied in the development of the classified rules as well 
as some computational experimentation and graph visuali-
sation of the agent classified rule learning algorithm and 

how they make accurate prediction for the required num-
ber of classified rules. Also we present the preliminary 
results of the pre-assessment system evaluation in which 
the results showed that the system has performed accord-
ing to its design specification. As revealed from this ex-
perimentation, the learning algorithms only holds for a 
regular ontology i.e. an ontology with equal number of 
leave-nodes across all parent class nodes [11].  

The hallmark of this work is the use of description logic 
tool – Jason AgentSpeak – in the development of an intel-
ligent tutoring system (ITS) in which agents communicate 
interoperable knowledge in the format of triples, thus 
causing changes in their mental state as they carry out the 
overall system's objective—which is to identify gaps in 
human learning.  

This paper continues with related works in Section I. 
Section II is BDI: Belief, Desire and Intention in agents, 
and agent environment. In Section III we present the Pre-
assessment agents, and multiple classifications learning in 
Section IV. Section V presents report on algorithmic ex-
perimentation and the results obtained; and Section VI is 
conclusions and further work. 

A. Related Work: Learning Systems and Strategies of 
Development 

Works in literature has it that several systems has 
emerged to support learning, teaching, and assessment 
(LTA). How these systems operate is perhaps determined 
by the strategy employed in their development e.g. com-
puter assisted assessment (CAA), computer based testing 
(CBT), intelligent learning system (ILS), computer assist-
ed learning (CAL), computer adaptive testing (CAT), 
learning management system (LMS) and web-based learn-
ing systems. To assess learning for instance, the CBT 
employs the strategy of presenting predefined sets of 
questions, while the CAT dynamically select and present 
questions depending on students’ performance [16]. 
Though varying needs has influenced the design of differ-
ent systems, holistically, computers in LTA was borne on 
the need to use technology to support teaching, improve 
student performance, provide fast and objective marking, 
change teaching strategies, personalise student instruc-
tions, and support ubiquitous and collaborative learning.  

Strategies involving intelligent techniques such as 
agents, machine learning technique and fuzzy logic ap-
proaches are also used in developing computer based 
learning systems. SimStudent [17] was developed with 
agent technology and machine learning approach. [7] 
engaged both multiagent and machine learning technique. 
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Their system used a two- parameter attributes student 
model: comprehensive ability (C) & problem solving skill 
(P). In [18], both machine learning technique and multia-
gent system approach were combined to develop an intel-
ligent system that provided hints to students on current 
learning goals and prediction of performances. Also there 
are some research works that provided opportunities to 
students to recall their prior knowledge before the start of 
new learning. [26] proposed an intelligent system of this 
nature where pedagogical agent are meant to evaluate 
prior knowledge but based on the selective categorisation 
of users as: novice, beginner, intermediate or advanced 
learners. The drawback of this is that users make the deci-
sion to select the category that they think they best fit-into 
before the presentation of learning materials. In our opin-
ion, self-categorisation may not reveal the actual 
knowledge status or capability of the user, as users may 
misjudge the best learning category that may suit their 
learning needs. Instead, such classification or categorisa-
tion should be done by machine intelligence. [24], [23] in 
a collaborative team project research with the “Guardian 
Agent” used given ground rules in facilitating students 
participation in online group tasks. Results obtained in 
[24] showed that the Guardian Agent supported students 
to identify the module area in which they are well-skilled 
and so were allocated to the appropriate project group. 
However, the areas in which some lack-of-skills were 
indicated by the students’ selection of skilled areas, the 
Guardian Agent did not address. 

From the limitations in the foregoing literature, the task 
of this work was to develop a pre-assessment system with 
agents in classification learning to categorise users based 
on some learned parameters before making learning mate-
rial prediction either for a passed pre-assessment or for a 
failed pre-assessment. In this view, the prediction of ap-
propriate learning materials after pre-assessment on some 
prerequisites would allow students to either proceed to 
learn their preferred area of desired or skilled concept; or 
learn materials in the area in which some lack-of-skills 
were identified. Learning the lack-of-skill concept(s) 
would enable the students to fill-in the gaps in their 
knowledge. 

II. BELIEF, DESIRES & INTENTIONS 
An agent is a computer system that is situated in some 

environment, and capable of autonomous action in this 
environment in order to meet its design objectives [25]. 
Intelligent agent architectures are modelled to have BDI—
Belief, Desires and Intentions. BDI is a model of human 
behaviour, and Jason AgentSpeak is one of those lan-
guages that is based-on and inspired-by the BDI model—
the idea that projects computer programs to have a mental 
state [5].  

Beliefs represent the information agent has about itself, 
other agents, and its environment [6], [19]. Desires repre-
sent the tasks allocated to the agent, this corresponds to 
the objective or goals the agent should accomplish which 
in effect causes a change in the future states or beliefs of 
the agents and their environment [6], [4]. Intentions repre-
sent desires that the agent is committed to achieving [4]. 
In Jason, the BDI model is accomplished through program 
plans—some given courses of actions.  

Within their environment, agents engage in communi-
cative action to meet their design purpose where they 
apply practical reasoning approach: reasoning directed 

towards action [25]. This approach which are used by 
Jason agents such as in the Pre-assessment System entails 
what state of affairs to achieve and how to achieve it 
through plans so that agents are given their: 1) initial be-
liefs, 2) goals to achieve their intentions, and 3) updated 
beliefs from the execution of some given goals or plans. 

A. Multiagent System Communication   
For agents in a MAS to fulfil their property of coopera-

tion, they must communicate understandably to achieve 
their collective goal. In such communication, there exist 
the:  
• sender;  
• receiver;  
• information content;  
• intention [designated by performative e.g. tell, 

achieve, askOne];  
• conventions [i.e. messages, negotiations about their 

goals and actions];   
• agent modelling [e.g. their beliefs, goals, authorities, 

etc.,] in the organisation or environment that they are 
part of. [2]

 

To apply the convention of message exchange, the 
sender, receiver, content, and the intention of communica-
tion must be specified. On the Pre-assessment System, the 
dynamics of interaction and communication starts from 
the user who enters a concept to learn, through to all the 
reactive agents and back to the user after the agents has 
performed their designed specifications. According to 
FIPA (Foundation for Intelligent and Physical Agents) 
standard, such communications must be stated in sequence 
from agent to agent. In Figure 1, we present a FIPA-
Compliant Agent communication Flow diagram. The 
diagram depicts both the static structure and dynamic 
interaction of the pre-assessment agents. 

 
Figure 1.  FIPA-Compliant Agent Communication Flow 

The diagram showed the detail message passing con-
vention in which performatives are used for communica-
tion of knowledge from agent to agent and the decision-
making stage of pre-assessment by the agent agSupport. 

B. MAS & Environment Programming 
One of the properties of agents is that they reside in an 

environment from where they get percept through sensors 
(methods in Java), and thereafter act on the percept via 
actuators (body of a plan). To program a multiagent sys-
tem (MAS), [21] proposed the equation: 
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Programming MAS = progr agents + progr environments 
 

with the view that the two sides of the equation are pro-
grams, but with the environment programming part 
strongly integrated with the agent programming part. 
Critical examination of the representation made in the 
equation reveals its conformity with the definition of 
agent proposed in [25] that — an agent is a computer 
system that is situated in some environment. That, in that 
environment they exhibit some properties of autonomy, 
sociability, cooperation, etc., in order to meet their design 
objectives. They can observe and perceive the state of the 
environment that they are situated in, and in effect per-
form the actions assigned. These environments form a 
range of artifacts in which agents can render their services. 
C. The Cartago Environment 

CArtAgO: Common Artifact Infrastructure for Agent 
Open environment infrastructure are runtime devices 
providing some kind of function or service in which 
agents can fruitfully use!both individually and collective-
ly!to achieve their individual as well as social objectives 
[20]. CArtAgO is a tool for programming and executing 
artifact based environments: it is a Java based program-
ming model for defining artifacts. To develop the Pre-
assessment System user interface, CArtAgO was chosen 
as the artifact and was configured for the agent agInter-
face to observe users’ text-based inputs and interactions.                      

In some agent systems, CArtAgO has been used to per-
ceive the dynamic changes from iterative mouse clicks 
precepts [21] of the environment from within an internal-
event generating Java program. In the context of this 
work, we have adopted the approach by customising CAr-
tAgO to perceive dynamic open-ended text-based inputs 
i.e. SQL queries and concepts which are external (from 
keyboard devices) to the agents.  

D. Pre, Post & Completion Conditions 
The speech acts theory of [1] and Searle [22] has pre-

dominantly influenced the development of Agent Com-
munication Languages (ACL) such that current speech-act 
based ACLs specify domain knowledge representation 
and perfomative communication acts. Labrou & Finin [15] 
semantics of speech acts shed more light on the locution-
ary, illocutionary and perlocutionary acts. These [15] 
described as three performative conditions for agent 
communication which are represented as preconditions, 
postconditions and completion: 
• Preconditions: The fact that is established before an 

act is performed (i.e. utterance). 
• Postconditions: The fact that is established after the 

act is performed (i.e. action). 
• Completion: The fulfilment of the intention of the 

act performed (i.e. effect). 
 

1) Establishment of Goals from Speech Acts 
Paradigm:  

Following the [15] semantics of speech acts, three per-
formative conditions for agent communication of goals 
were established for the Pre-assessment System in pre-
conditions, postconditions and completion. The comple-
tion Condition becomes the transition state [3] in which 
the agents of the Pre-assessment System can establish the 
eventual goal that can only be achieved at some time after 
any current conversation has finished. In the following 

Pre, Post and Completion analytics, we present the phases 
of the semantics of speech acts performatives as they 
apply to the Pre-assessment System: 

i) As a registered student, a student can enter a de-
sired_Concept (to learn) without a precondition, and the 
set of Preconditions, Postconditions and Completion are 
as follows: 

 

Precondition: student <Ln> has decided on the                    
desired_concept <Tn> to learn. 
Postcondition: concept <Tn> has been entered. 
Completion: concept <Tn> has been sent. 

 

ii) But we do not know if the student has adequate pre-
requisite knowledge to the concept entered to learn. The 
agent agSupport received the concept, and triggers the 
appropriate plan to sort out the quiz of the prerequisite 
<Tn-1> to the concept <Tn>: 

 

Precondition: agent agSupport has the rule to sort out the               
prerequisite quiz <Tn-1>.   
Postcondition: agent agSupport sort quiz <Tn-1>. 
Completion: quiz <Tn-1> is sent for the student’s pre-            
assessment. 

 

iii) The pre-assessment quiz is presented to the student: 
 

Precondition: quiz < Tn-1> concept has been asked. 
Postcondition: student has provided an answer <An>. 
Completion:    KB records updated. 

 
iv) The student’s response is communicated back to the 

agSupport agent: 
 

Precondition: student has given a response. 
Postcondition: agent agSupport tested if answer <An> is OK. 
Completion:    student committed to learn. 

 

v) agent agSupport feedback the result of assessment to 
student: 

 

Precondition: student has passed or failed. 
Postcondition: feedback has been given. 
Completion:    KB Records updated. 

 

vi) agent agModelling has classification attributes  
 

Precondition: student attributes received. 
Postcondition: student has been classified. 
Completion: classified ontology information is sent  

     to agMaterial. 
 

vii) Appropriate learning to be recommended.  
For a Passed result: 
 

Precondition: student has Passed the quizzes. 
Postcondition: student is prepared to learn         

desied_Concept <Tn>. 
Completion: student gets desired_Concept <Tn> URL. 
 

For a Failed response: 
 

Precondition: student has NOT Passed the quizzes. 
Postcondition: student is NOT prepared to learn desired_concept 
<Tn>. 
Completion: student gets prerequisite <Tn-1> URL. 

 

This is the semantic analysis of the pre-assessment pro-
cess.  
E. A Regular Ontology  

Ontology is a process of knowledge representation that 
helps to visualise domain knowledge, its associated con-
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cepts and the relationships that exist between the concepts. 
The essence of ontology is to specify true and valid rela-
tions or properties that exists between objects in a logical 
ideology [8]. [12], [13] states that ontology specifies the 
classes of objects that exist, the relationships amongst 
those classes, the possible relationships amongst instances 
of the classes, and constraints over those instances.  

This work encompasses agents’ use of a regular ontol-
ogy: Ontology with equal number of leaf-nodes across all 
parent nodes [11]. The ontology is that of a learning struc-
ture constructed in the domain of SQL with the Protégé 
4.3 OWL ontology editor [14]. Protégé is an ontology 
construction tool for the semantic web. In the SQL ontol-
ogy, concepts are interlinked by means of Object Property 
and Data Property relations, respectively. Notably, the 
Object Property relation (i.e. hasPrerequisite) was used as 
the predicate relation to form the prerequisite inter-
dependence of a lower-concept in the hierarchy of class 
structure to its immediate higher-level concepts, and the 
Data Property relation (i.e. hasContent) as the predicate 
relation for assigning web URL data values to subclass 
instances or leaf-nodes. The ontology construction conse-
quently lead to the modelling and initialisation of the 
ontology structure in the BB of the agent agMaterial using 
the tagname of concepts (e.g. delete), instead of fully 
qualified OWL URI (universal resource identifier) names 
e.g.        
<http://www.sql.com/ontologies/sql.owl#delete>. 

This URI is the namespace of the delete concept from 
Sesame OpenRDF Workbench Repository after the SQL 
ontology upload (Fig. 2). Before this upload to Sesame, 
the ontology has been constructed with Protégé. 

III. THE PRE-ASSESSMENT AGENTS 

A. Agent agInterface 
This is the agent that is given the focus to observe the 

dynamic user inputs at the artifact CArtAgO. An example 
of the SELECT input perception process is: 

 

+value(V)[source(percept)] : value("SELECT") 
<-.println("The topic you have entered to learn is: ", 
V); 
.broadcast(tell, value(V)).  

B. Agent agModelling 
This is referred to as the classifier. It learns and classi-

fies the attributes received from the agent agSupport, and 
in-turn communicate the agent agMaterial after classifica-
tion. 

C. Agent Student Model  
This is the agent that constructs and keep track of every 
student activity that is received from the agent agSupport. 
The Student Model agent is configured with the Jason 
TextPersistentBB class. The TextPersistentBB is a persis-
tent text file that captures all activities or learning history 
which consists of students’ desired concept, pre-
assessment questions, and correct and/or incorrect answers 
to questions. These parameter information are also Time 
and Date stamped from the agent agSupport so that the 
course tutor can deduce the amount of time a given stu-
dent has spent on each task. 
To identify gaps in students’ learning, we have devised a 
Student Model to keep four parameter-information persis- 

Figure 2.  A snapshot of fully qualified OWL URIs from the Sesame 
Ontology Workbench Repository. 

tently about a given student. In a tuple, this model has 
been presented as: M = <D, P, F, V> [10], [11] where  
M: is the model 
D: a set of desired concepts i.e. desired state 
P: a set of passed pre-assessment i.e. current state gains  
F: a set of failed pre-assessment i.e. current state gaps  
V: the set of SQL query statements. 
 

Parameters <D, P, F> are simultaneously communicat-
ed by the agent agSupport to the agents Student and ag-
Modelling. The parameterised information are then gath-
ered, learned by the agent agModelling as pre-conditions 
within which the appropriate plan is selected to classify 
students and make prediction for their learning materials. 
The rule in a Jason plan format for this classification is 
given below and some exemplary code in Section IV: 

 

      +recommend_material : set_of_profile_parameters 
<- recommended_material. 

D. Agent agSupport 
This is the teacher in terms of machine learning. It pre-

assesses the student based on the desired_concepts re-
ceived and communicate the outcome of assessments to 
the agents agModelling and agModel, respectively. This 
agent also connects the MAS to MySQL database engine 
for result-set queries through the JDBC PersistentBB 
Driver. Thus far, from users’ queries, the agSupport can 
make changes to the Tennis_Database tables when correct 
INSERT query statements are logged-in, and display of 
result-set queries from SELECT query statements. This 
agent also Time and Date stamped the outcome of pre-
assessments before passing the information to other 
agents. It also asks the ontology agent, whether the con-
cept it received exist in its BB. An exemplary code is: 
//plan to receive the SELECT concept. SELECT has no 
prerequisite 

+value(V)[source(agInterface)] : value(V)== 
value("SELECT")            <- 
.date(YY, MM, DD); .time(HH, NN, SS); 
.send(agModelling, tell, desired_Concept(V)); 
.send(student, tell, desired_Concept(V)); .concat(V, ", 
date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", 
NN, "-", SS, ")", Ms); .send(student, tell, 
desired_Concept(Ms)); .send(agMaterial, askOne, 
hasPrerequisite(V, select));//Asking whether concept 
exists .println(V, " has No prerequisite.");                
.send(agModelling, tell, recommendMaterial). 
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E. Agent agMaterial  
This is the ontology agent that has all ontological rela-

tions initialised in its BB including the web URL data 
value of all SQL concept in the ontology tree. This agent 
learns its ontological relations in its BB and outputs the 
appropriate URL learning material after communication 
from the classifier"agent agModelling. Its other function 
is to match a users’ desired concepts with its BB ontology 
facts in order to ascertain whether that concept exist, and 
in-turn inform the user.  

IV. MULTIPLE CLASSIFICATIONS LEARNING 
As the classifier, the agent agModelling learns every at-

tribute of the parameters received from the agent agSup-
port during the course of pre-assessment (Fig. 3). The 
classification and learning process uses the parameterized 
attributes described in Section III. Below we give some 
exemplary classification code in Jason from the agent 
agModelling plan library. This would pre-assess students 
on the INSERT prerequisite when DELETE is received as 
the desired_Concept [10], [11]:   

 

… 
/* Prediction rules for DELETE concept */ 
@d1  
+!recommendMaterial[source(agSupport)] :  de-
sired_Concept("DELETE")[source(agSupport)] 

& passed("The student has passed the 
INSERT with SELECT question.") 
& passed("The student has passed the 
INSERT with VALUE question.") 

<- .send(agMaterial, achieve,  hasPrereq-
uisite(delete, insert)). 

@d2  
+!recommendMaterial[source(agSupport)] :  de-
sired_Concept("DELETE")[source(agSupport)] 

& passed("The student has passed the 
INSERT with SELECT question.") 
& failed("The student has NOT passed the 
INSERT with VALUE question.") 

<- .send(agMaterial, achieve, has_KB(insert, 
 insert_value)).  
  
@d3  
+!recommendMaterial[source(agSupport)] :  de-
sired_Concept("DELETE")[source(agSupport)] 

& failed("The student has NOT passed the 
INSERT with SELECT question.") 
& passed("The student has passed the 
INSERT with VALUE question.") 

<-.send(agMaterial, achieve, has_KB(insert,  in-
sert_select)). 
  
@d4  
+!recommendMaterial[source(agSupport)] :  de-
sired_Concept("DELETE")[source(agSupport)] 

& failed("The student has NOT passed the 
INSERT with SELECT question.") 
& failed("The student has NOT passed the 
INSERT with VALUE question.") 

<-.send(agMaterial, achieve,  hasPrerequi-
site(insert, select)). 
… 

 

In Figure 3, we replicate the mechanism of the code 
snippet (above) and also show the decision components of 
two other agents in their dynamic and selective decision-
processes and communications. In Jason, agents like hu-
mans have mental capabilities. Thus, a tell or broadcast 
performative type of message content becomes knowledge 
to an agent until the MAS is stopped. These semantic 

information or knowledge which are contained in the BB 
of the agent forms the basis upon which decisions are 
made when such knowledge are referenced and satisfied 
from within the relevant plan. So for the classifier agent, 
the number of parameterised attributes (of the student) 
that forms each plan (containing a group of semantic 
knowledge) in the array of classified rules is dependent on 
the number of leaf-nodes in an ontology structure. 

 
Figure 3.  One vs. All Multiple Classification 

Furthermore, on the code snippet above, students are 
classified for learning material into one of four categories 
for the given desired_Concept DELETE (in this case) 
after pre-assessment on its prerequisites. In the code, the 
attributes of the students which forms the production-rules 
(otherwise known as the context in Jason agentSpeak) or 
pre-conditions must be true and satisfied before classifica-
tion is completed.  

A. Agent Classified Rule Learning Estimation 
Algorithm 

[10] states that: In production rules classification learn-
ing, let C be the number of prerequisite concept(s) to a 
desired concept D, T a binary-state value for student pre-
assessment outcome and N the equal number of leaf-nodes 
across each parent node, then the total number of classi-
fied production rules R (initialisation equation) for a giv-
en ontology tree is determined by:

 

R = CTN + 1  . . .  eq.1 

where  
C ! {0, 1, 2, ..., k}

       T = 2, for a pass or fail state 
      N ! {1, 2, 3, ..., k} 

 

For any SQL rules set that would need to be added to 
the array of classified rules, the agent agModelling would 
increment the number of classified rules for a given con-
cept by: 

 

R" = R + CT(N-1) . . .  eq.2
 

where  
 

C = 0, 1, 2,…, k  
 

in   R = CTN + 1; 

and conversely decrements by removing rules for a 
concept that is no longer needed with:  

R" = R – [CTN / 2] . . .  eq.3 
 

where  
C " 0 

 
 in   R = CTN + 1.          
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Here it is pertinent to note that (2) and (3) has been 
slightly modified from those that were first presented as
Agent Learning Hypothesis in [10] due to complexities 
experienced in the accurate scaling of the algorithm; de-
tails explained in Section V of this paper. 

From each learning algorithm, the number of rules to be 
added or removed is determined by the number of leaf-
nodes TN in the ontology. Since TN = 22 then the number 

of classified rules equals 4 for each parent class concept of 
ontology of two-leave nodes. In the DELETE example 
(Section IV), the agent agModelling classifies the student 
and make prediction for appropriate learning URL through 
semantic literal communication to the agent agMaterial 
using the tell or achieve performative. That is, 

 

.send(agMaterial, achieve, hasPrerequi-

site(delete, insert));  
 

in which the agent agModelling is sending an achieve 
performative message to the agent agMaterial. The 
achieve message is a command going by [1] and [22] 
illucationary acts. On receiving this message, the receiver 
agent agMaterial execute the action. The achieve message 
does not form a belief in the receiver's BB, and that is 
quite different from the following communication: 

 

.send(agModelling, tell, passed(X)); 
 

where the agent agSupport is informing the agent ag-
Modelling – via the tell performative. When the receiver 
agent gets the message, the message becomes a belief thus 
adding to the agent experience for influencing its classifi-
cation learning. 

B. Algorithmic Scalability  
In the context of this work, an algorithm is said to be 

scalable if it is suitably efficient and practical when ap-
plied to a large number of class node in an ontology, and 
would estimate the accurate number of classified produc-
tion rules that is required by an agent to predict and make 
accurate classification. If the design of an algorithmic 
system or model fails when some quantity increases then 
it does not scale. To test for scalability, we chose the 
graph plotting tool of Python27 programming language. 

To describe the scalable element of the algorithms, let’s 
restate the expression for R in (1) above as R(C, N), which 
implies that R is a function of C and N, that is: 

 

R(C, N) = CTN + 1  . . .  eq.4 
 

where  
 

T = 2 
 

for a two-state value constant of pass or fail. Then sub-
stituting for T, (4) becomes: 

 

R(C, N) = C* 2N + 1 . . . eq.5  
 

Thus, its scalability with respect to the element C that is 
subject to incremental changes, we state  

 

R (C", N) = C" * 2N + 1  . . .  eq.6 

 

where  
 

C" is the prerequisite class nodes as well as the scalable 
element.  

The effect of this is that for sequential increases in the 
number of class nodes in a regular ontology, the total 
number of classified rules R for the Classifier agent will 
equate to R(C", N) i.e. as C increases, R(C", N) estimates
the accurate number of classified rules needed by the 
classifier agent for the accurate classification of the users 
of the system. Thus, R(C", N) is dependent on C" and N; 
where N # 0 and must be kept constant and equal across 
all parent class nodes C. See illustrations in Figure 4.  

 
Figure 4.  Depicts scalability of class or parent nodes at the level L2 

from (a) to (b). 

For scalability with respect to increased changes to N, 
we state that  

 

R(C, N") = C * 2N + 1 . . . eq.7 
 

such that R (C, N") determines the accurate number of 
classified rules while C is kept constant. This is illustrated 
in Figure 5. 

 
Figure 5.  Scalability of leave-nodes N at level L3 of (a) to (b) 

C. Principle of Classified Rule formulation 
Considering Figure 4(a & b), we have three levels L1, 

L2 and L3 in the ontology; and that is also true of the 
Figure 5(a & b). In Figure 4(a), we say the ontology tree 
has three parent class nodes but two prerequisites classes 
C at level L2, and in Figures 4(b), 5(a) and 5(b) at level 
L2, the ontology trees has four parent class nodes but 
three pre-requisite concepts C, respectively. Any of the 
parent node at Levels L2, can be a desired_Concept D and 
the nodes beneath them their prerequisite(s).  

Now considering the <P> and <F> parameters of the 
Student model tuple, for a desired_Concept that has no 
prerequisite i.e. C = 0, the total number of rules R = 1 (the 
DEFAULT). This is the default rule that would output 
only the web URL link for that concept when the least 
concept is the desired_Concept of the student. But for 
other higher concepts, we now describe the agent classi-
fied rules formulation process as follows: 
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For a Desired_Concept D with:  
 

a) prerequisite C = 1, leaf-node N = 1, the number of 
rules R = 3.  

That is: 
           
           

b) prerequisite C = 1, leaf-node N = 2, the number of 
rules R = 5 

That is: 
 
 
 
 
 
 

 

c) prerequisite C = 1, leaf-node N = 3, the number of 
rules R = 9 

That is: 
 
 
 
 
 
 
 
 
 
 

d) prerequisite C = 2, leaf-node N = 2, the number of 
rules R = 9 

That is: 
 
 

 
 
 

 
 

 

This process of classified rules formulation is depend-
ent on the C, T, N, and D; where D becomes the attribute 
that will first and foremost prune the search space to the 
category of the desired_Concept.  

V. EXPERIMENTS & RESULTS 

A. Test-Running Algorithmic Scalability
Having used Python27 as the algorithmic testing and 

data generating tool, we now present the results from the 
test of the three equations: Initialisation, Incremental and 
Decremental equations. The data sets obtained showed 
accurate predictions in the number of classified rules R 
needed in an agent’s BB. This test was run on a number of 
iterations and results were manually compared for a range 
of N = 1 to 5, and for C = 0 to 6. Figure 6 (for example) 
shows one of the iterative processes and results of how 
data was generated for the equation  

 

R(C#, N) = C#* 2N + 1 
 

as C increases. The result shows that the equation  
 

R#(C, N) = C# * 2N + 1 
 

scales accurately well in predicting the number of rules 
R. 

Similarly, accurate results were also obtained when 
 

R(C, N#) = C * 2N + 1 
 

 in (7) was test-run with sequential increases in N. Fig-
ure 6 – 8 shows some program execution. 

 
Figure 6.  Result of R(C, N) = C*2N +1 

B. Algorithmic Complexity & Solution 
Subject to to extensive testing, we however found some 

complexity in the equation R# = R + 2N that was initially 
given as the Incremental algorithm in [10] due to inability 
to scale accurately to predict the needed number of rules R 
for all C and N. This complexity lead to the re-
examination and modification of the incremental 
algorithm given in (2), and the its inverse decremental
algorithm in (3) above, respectively.  

This is because R# = R + 2N only scaled accurately for 
the prerequisite C = 2 and its sequential increases in N, 
but failed to scale accurately for C = 0, 1, 3, 4, 5, etc., 
when it was computed programmatically (Fig. 7). 

 
Figure 7.  Result of R" = R + 2N where C = 2 

The modified scalable equations are thus 
 

   R# (C, N´) = R + CT(N-1)   
 

the incremental algorithm in (2), and it inverse algorithm-
--the decremental in (3) 

 

     R#(C, N´) = R - [CTN / 2]. 
 

The decremental algorithm decrements or reduces the 
exact rule number R that is given to the point where N = 1 
accurately. The reduction process is determined by 
expression  

 

PP 
PF 
FP 

FF + 1 (DEFAULT) 

C1 =  

C1 =  P 
F + 1 (DEFAULT) 

 

PPP 
PPF 
PFF 
FPP 
FFP 
PFP 
FPF 

FFF + 1 (DEFAULT) 

C1 =  

PP 
PF 
FP 
FF 

C2 = 

PP 
PF 
FP 

FF + 1 (DEFAULT) 
 

C1 = 
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CTN / 2 
 

in the equation.  The number of rules R left after each 
decremental computation has yielded accurate number of 
classified rules R for every C and N (see Fig. 8b). The 
incremental and reduction process of rules would be 
induced subject to constraints to be given to agents. In this 
ontology, no blank node are allowed, because the 
algorithm will not scale accurately. As a prove, see figure 
8(b) where N iterated to zero, the value of R was 5, which 
in reality should be zero. Thus, N can never take a zero 
value. 

 
(a) Result for R# = R + C*T**(N – 1); C = 3, N = N + 1 

 
 

(b) Result for R# = R – [C*T**N / 2]; C = 4, N = N - 1 

Figure 8.   

C. Data Set and Data Visualisation 
From the computations, we obtained the following 

exampler data set for R based on different values of C and 
N, respectively.  The data generated are presented in a 
group of three for C = 0 to 6, N = 1 to 5, and R = 0 to 6 
vectors. The values were plotted, and from the plots the 
behaviour of the algorithms were visualised (Fig. 9 & 10). 

 

C0 = [0, 0, 0, 0, 0] 
N   = [1, 2, 3, 4, 5] 
R0 = [1, 1, 1, 1, 1] 

 

C1 = [1, 1, 1, 1, 1] 
 N   = [1, 2, 3, 4, 5] 

     R1 = [3, 5, 9, 17, 33] 
 

C2 = [2, 2, 2, 2, 2] 
N   = [1, 2, 3, 4, 5] 

      R2 = [5, 9, 17, 33, 65] 
 

C3 = [3, 3, 3, 3, 3] 
N   = [1, 2, 3, 4, 5] 

        R3 = [7, 13, 25, 49, 97] 
 

C4 = [4, 4, 4, 4, 4] 
N   = [1, 2, 3, 4, 5] 

          R4 = [9, 17, 33, 65, 129] 
C5 = [5, 5, 5 5, 5] 
N   = [1, 2, 3, 4, 5] 

            R5 = [11, 21, 41, 81, 161] 
 

C6 = [6, 6, 6, 6, 6] 
N   = [1, 2, 3, 4, 5] 

            R6 = [13, 25, 49, 97, 193] 
 

In the data set, it is observed that the values of R has a 
regular pattern. This is assumed to be connected to the 
regular ontology structure—representation of equal leaf-
nodes. In addition, it is also noticed that the set of data for 
R follows a progressive trend for C and N respectively. 
This spontaneously generated an interest in the research to 
unravel the factors behind the these patterns. Subsequently 
the need arose to develop the equation(s) to fit this pattern: 
Equations that can predict the values of R.  

D. Preliminary Evaluation of the Multiagent Based Pre-
assessment System

In this section, we present the results of the Pre-
assessment System evaluation. This evaluation is the 
preliminary test of the system: to see the performance of 
the system, check fitness for purpose as well as get users’ 
feedback so as to improve design. Participants in this 
evaluation were MSc and BSc final year undergraduate 
Database students respectively. They were recruited for 
this purpose after giving their consent.  

Following the model of design, all student activity and 
history of learning were persistently recorded in the agent 
student TextPersistentBB beliefs. This BB history was 
accessed by the researcher and results were analysed. The 
analysis of the data collated from the BB showed that the 
system identified learning gaps with respect to the 
Desired_Concept of students (Fig. 11(a) and (b)). 

 
Figure 9.  Visualised estimation of R in graph C vs. R. N increases 

from 1 to 5 for each Prerequisite C class node. 

 
Figure 10.  Visualised estimation and behaviour of the graph N vs. R  
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(a): Student A: Analysis of pre-assessment when UPDATE was entered as Desired_Concept. 

 
(b): Student B: Analysis of pre-assessment when UNION was entered as Desired_Concept. 

Figure 11.   

In Figure 11(a) Student A analysis, the UPDATE 
concept was the desired_Concept. Student A was pre-
assessed on the DELETE concept which is the 
prerequisite or immediate lower node to UPDATE. So the 
pre-assessment started from the DELETE_SELECT to the 
DELETE_WHERE leaf-node i.e. from the more technical 
concept to the less technical leaf-node concept. From the 
analysis Student A had two attempts on the same 
UPDATE desired_Concept. In the first attempt, Student A 
was pre-assessed to have “NOT Passed”. Then a second 
attempt was made, but the same result was obtained; and 
Student A was thereafter recommended to learn both 
concepts: the DELETE_SELECT and DELETE_WHERE. 
Thus, the student was not prepared to learn the UPDATE 
desired_Concept. 

Similarly in Figure 11(b) on the analysis of Student B, 
the same scenario played out — to have “NOT Passed” 
the pre-assessment on the JOIN query leaf-node concepts 
when Student B entered UNION as desired_Concept. 
Student B also had two attempts. 

At the end of each pre-assessment exercise, the students 
were classified and recommended to learn materials of the 

failed SQL concepts; and the URL links were presented 
by the ontology agent to fill-in the knowledge gap. Also 
from the analysis, the time spent on each task by the 
students were deduced as recorded by the agent Student. 
From Figure 11(a) Student A spent an average of 36sec on 
the DELETE_SELECT task, and an average of 2min 
24sec on the DELETE_WHERE task. In figure 11(b), on 
the OUTER_JOIN task, Student B spent an average of 
1min 01sec, and an average of 1min 15sec on the 
INNER_JOIN. Overall Student A spent a total of 2mins 
while Student B spent a total of 1min 08sec doing their 
tasks on the system. 

E. User Feedback from System’s Evaluation 
After the evaluation of the Pre-assessment system, the 

students were invited to take part in a survey on Survey-
Monkey about their experiences with the system. From the 
20 item questionnaire data also collated, it was gathered 
that the students are quite familiar with SQL, and that the 
pre-assessment of prerequisite concept(s) when they en-
tered a Desired_Concept helped them to recall their SQL 
skills. However, there was the dissenting view that the 
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system does not give room for “trial and error” test on 
their SQL code. That, it gives no second chance as the 
system would evaluate your code straight-on as soon as 
your SQL queries are logged-in; and then to the next ques-
tion.   

VI. CONCLUSIONS & FURTHER WORK 
This paper has demonstrated the use of a multiagent 

system tool in developing intelligent tutoring and learning 
system (ITLS) by employing the One vs. All Multiple 
Classification technique. We have shown how agents 
learns, reason and share knowledge through semantic 
communication in order to cooperatively diagnose gap(s) 
between a student’s desired knowledge and his previous 
knowledge from some devised set of parameters. Our 
preliminary evaluation of the system showed that the Pre-
assessment Systems identified gaps in skills and predicted 
learning materials. The paper also detailed the develop-
ment process of the three algorithms that estimates and 
predicts the required number of classified rules for agents. 
To the best of our knowledge, these algorithms are the 
first in a report that estimates classified number of rules 
based on the use of ontologies. The scalability of the algo-
rithms were tested and shown using graph visualisations. 
In the future we shall automate the process in which 
agents can use these algorithms to update their classified 
rules under some given constraints. We also intend to 
conduct further studies on multiagent connection, com-
munication and querying of ontology repositories such as 
Sesame OpenRDF Workbench.  
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