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Abstract

Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their
external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by
photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract
ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic
and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (,432, 1141 and 2151 matm
pCO2). The O2 concentration difference between the seawater and the test surface (DO2) was taken as a measure for the
photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal
surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at
saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited
symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2,
also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for
ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing
foraminifera against OA.
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Introduction

Ocean acidification has become a major threat to our world’s

oceans [1]. From preindustrial times until today, atmospheric

carbon dioxide (pCO2) concentrations increased from ,280 ppm

to .390 ppm, and are predicated to rise to ,800 ppm by the end

of this century under the IPCC business-as-usual emission scenario

(WG 1, A2, [2]), which is likely to be exceeded [1,3]. The current

rapid atmospheric CO2 increase is mostly due to anthropogenic

induced changes from increased fossil fuel combustion, deforesta-

tion and changes in land use and is now greater than at any time in

the last 300 million years of Earth’s history [4,5,6]. Not only is

CO2 a potent greenhouse gas in the atmosphere resulting in global

warming, but about one third of the anthropogenic CO2 increase

is taken up by the oceans [1,7]. This uptake reduces pH and

consequent carbonate saturation state (V) of the ocean surface

waters, a process generally termed as ‘ocean acidification’ (OA).

Phototrophic marine calcifiers (such as coccolithophores, forami-

nifera, calcareous algae and corals) strongly contribute to the

cycling of carbon in our world’s oceans, as part of the so called

‘biological pumps’ [8–10]. By changes in ocean chemistry ocean

acidification poses a direct threat to most calcifying organisms and

consequently the biological pumps [1,11,12].

However, the effect of bulk seawater pH is mediated through

the diffusive boundary layer (DBL), which governs transport

resistance between the bulk seawater and the organisms’ surface.

Around phototrophic organisms (including most major calcifiers

such as phytoplankton, foraminifera, corals and calcareous algae)

DBLs can maintain substantial gradients of O2 and pH to the bulk

seawater, due to their high photosynthetic and respiratory activity

[13–21]. Especially under daylight conditions, surface pH levels of

phototrophic or photosymbiotic organisms can differ strongly

(.0.1 pH units) from the surrounding seawater [13–21]. It is this

surface pH and the resulting gradients within the organisms’ DBL,

rather than the bulk seawater pH, which determine ion-availability

[17] and consequently transport kinetics between the tissues and

surrounding seawater. Microenvironmental pH dynamics are

therefore likely to play an important role in physiological responses

to ocean acidification. Understanding O2 and pH dynamics and

variability within the DBLs under both present day and future OA

conditions is therefore essential for all transport involving

metabolic processes such as calcification, photosynthesis or

respiration.

We hypothesize that OA induced increases of seawater DIC

might enhance photosynthesis of photosymbiotic calcifiers and

consequently result in increased pH levels on their surfaces in

daylight. Thus, the pH DBL might form a shield around the

organism protecting it from OA. We studied whether this pH

elevation within their microenvironment can protect photosym-

biotic calcifiers (or at least partly compensate) from the effects of

ocean acidification in daylight and therefore lend additional

resistance compared to non photosymbiotic calcifiers. We tested

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e50010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OceanRep

https://core.ac.uk/display/33671662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


this hypothesis by measuring the O2 and pH microenvironment of

4 photosymbiotic and 2 symbiont-free benthic tropical foraminif-

eral species under different ocean acidification scenarios in light

and dark conditions.

Benthic foraminifera represent a good group of model

organisms for this study, because compared to most other

calcifiers, calcification is periodic rather than continous, and

periods of calcification can be detected visually. Additionally, the

process of chamber formation is very sensitive to mechanical

disturbances and thus unlikely to occur in short term flume

measurements (see material and methods section, also [22–23],

reviewed in [24]). Impacts of active calcification on pH

microenvironments can thus be excluded during the measure-

ments. In addition, both symbiont-free and photosymbiotic species

were tested, allowing for the direct comparison of the effects of net

photosynthesis and respiration on O2 and pH microenvironments

under equal experimental conditions.

Materials and Methods

Sampling and Culturing
Specimens of the photosymbiotic species Marginopora vertebralis,

Amphistegina radiata, Heterostegina depressa, and Peneroplis sp., and the

symbiont-free species Quinquelloculina sp. and Miliola sp. were hand

collected from coral rubble and other substrates containing

foraminiferal assemblages by SCUBA diving during a cruise in

the summer months of 2010 in the Whitsunday area, central

section of the Great Barrier Marine Park. All necessary permits

were obtained prior to field collection from the Great Barrier

Marine Park Authority (Permit-No: G09/30237.1). Collection

sites included, Bait Reef S 19u80.179 E 149u07.559, Daydream

Island S 20u15.359, E 148u48.739, Shaw Island S 20u31.029 E

149u04.489 and Deloraine Island S 20u09.309, E 149u04.509

(depth 5–13 m, seawater temperature during collection

28.860.2uC (mean 6 SD) and salinity 35–36). A detailed

description of the sampling sites can be found in Uthicke et al.

[25].

After collection, specimens were washed off substrates, cleaned

by gentle washing and sieving and identified to species and genus

level [26] under a dissecting-microscope (Leica MX16 A, Solms,

Germany). Samples were kept in natural seawater (24u - 26uC)

under low light conditions (10 mmol photons m22 s21), until they

were transported to the Australian Institute of Marine Science

(AIMS) in Townsville. Prior to experiments, specimens acclima-

tised in indoor climatic chambers.3 weeks in natural seawater

(replaced every 3 days, sediments removed) at 24u - 26uC, 10 mmol

photons m22 s21, 12 h : 12 h diurnal cycling and fed with

microalgae (Isocrysis sp.). Salinity of nearshore seawater available at

the AIMS was diluted (32–34) due to high seasonal rainfall.

During culturing and experimental treatments seawater salinity

was therefore adjusted to 35 by the addition of sea salt (Sunray,

Cheetham Salt, Melbourne, Australia). Salinities were measured

using a refractometer (S/Mill-E, Atago, Tokyo, Japan).

Experimental Setup
Carbon perturbations experiments were performed by the

addition of CO2 enriched air into a semi-closed circulation system

of filtered (1 mm) natural seawater. CO2 enriched air (0.2%) was

humidified via a system of Erlenmeyer flasks and bubbled into an

aerated reservoir tank (30 L), connected to incubation chambers,

which contained the organisms (water flow rate 0.5–1.0 cm s21).

Gas flow rates and thereby pCO2 levels were regulated via mass

flow controllers (accuracy 1.5%, GFC17, Aalborg, Orangeburg,

NY, USA). The system was allowed to equilibrate for.48 h.

All amperometric and potentiometric microsensor measure-

ments were conducted in a Faraday cage to minimize electrical

disturbance. Before the measurements specimens were carefully

transferred with a fine brush from the incubation chambers into a

flow-cell (1.2 ml volume), connected to the same circulation

system. Net flow rates within the flow cell were adjusted

volumetrically to 0.5060.02 cm s21 (mean 6 SD), to simulate

average natural in situ flow conditions experienced by epifaunal

and shallow infaunal foraminifera within the benthic boundary

layer of reef environments [27]. Net horizontal flow was

monitored ,3 mm above the foraminiferal surface by observing

particle movements via a stereo-microscope (K400, Motic, Xia-

men, China).

Illumination was provided from above via a fiber-optic guide

from a halogen light source (Schott KL2500, Mainz, Germany).

Light intensities were monitored with a quantum irradiance meter

(LI-250A, LI-COR, Lincoln, NE, USA), combined with a light

sensor for photosynthetic active radiation (PAR).

Microelectrodes
Clark-type O2 microsensors with a guard cathode (tip diameter

,20 mm,,1 s response time (t90), precision 0.05 mM) were

constructed and calibrated as previously described [28]. pH

measurements were performed by liquid ion exchange (LIX)

membrane microelectrodes (tip diameter 5–20 mm,,1 s response

time (t90), precision 0.001, on the NBS scale), as previously

described by de Beer [29], and a commercial pH meter (pH 1100,

Oakton, Vernon Hills, IL, USA). Ca2+ concentrations were

determined with LIX microelectrodes (tip diameter 5–20 mm,,2

s response time (t90), precision 13 mM), which were prepared,

calibrated and used as described [30,31]. A detailed description of

the measurement setup can be found in Polerecky et al. [32].

Experimental Procedure and Determination of
Microenvironmental Dynamics

Using a fine brush, foraminifera were positioned horizontally in

the middle of the flow cell resting on their central elevations, with

the exception of Marginopora vertebralis, which exhibits a flat surface

structure (Figure 1). Microsensor tips were positioned on the

calcite shell surfaces of foraminifera, using a stereo-microscope

and a 3D-manual micromanipulator (MM33, Maerzhaeuser,

Wetzlar, Germany). O2 evolution within the DBL of phototrophic

species was tested under varying light intensities (data not shown).

A light intensity of 30 mmol photons m22 s21 was found saturating

for all photosymbiotic species, without causing photo-inhibition in

the tested low light species Amphistegina radiata and Heterostegina

depressa [27] and used throughout all ‘light’ experiments (see also

[33,34]).

To determine the t90 value of steady-state signals of the system

O2, pH and Ca2+ probes were positioned on the test surface of

photosymbiotic individuals and recorded for ,30 min, while light

levels were altered (light/dark changes). O2 (pA) reached.90%

steady-state signals ,2 min, pH values (mV) took,6 min, while

Ca2+ (mV) values did not change significantly. To ensure steady-

state, light levels were applied for 10–60 min prior to measure-

ments. Steady-state profiles were measured in step sizes of 50 mm

(up to 400 mm) and 100 mm about 1500 mm upward perpendic-

ular to the foraminiferal test, through the diffusive boundary layer

into the bulk seawater (Figure 1). Due to slow erecting of

individuals by rhizopodial movements, gentle nudges with a fine

brush were applied in between profiles to assure rhizopodial

retraction, so that foraminifera and their extending DBLs

remained in their horizontal position.

O2 and pH Microenvironments at High pCO2
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To illustrate the effect of zero flow (i.e. static culture) conditions

on pH microenvironments, individuals of Marginopora vertebralis

were pH profiled at the same position on the calcite shell at

432 matm (pH 8.22), 30 mmol photons m22 s21 under mean

turbulent flow conditions (0.5 cm s21) and consecutively after flow

was turned off after 5, 10, 20, 30, 40, 50, 60, 90 and 100 min and

Figure 1. Microenvironmental O2 heterogeneity at a pCO2 of 432 matm, 30 mmol photons m22 s21 light, and 0.5 cm s21 water flow
across foraminiferal shell surfaces. Data derived from fine-scale microsensor profiles at the points indicated by the crosses. Red crosses indicate
the measurement positions (n = 2–4) used for the calculation of means per individual. Note the different contour scales between A) photosymbiotic
and B) symbiont-free species.
doi:10.1371/journal.pone.0050010.g001

O2 and pH Microenvironments at High pCO2
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again after flow was re-established within 5 min. Individuals of

M. vertebralis were chosen for these measurements since they

remained attached to the bottom of the flow cell in a fixed position

for extended periods of time.

To estimate spatial microenvironmental O2 heterogeneity

across the shell surfaces, specimens of every species were fine

scale profiled at 432 matm from front to back in flow direction

(Figure 1).

Determination of O2, H+ and Ca2+ Microenvironmental
Dynamics

To account to some extent for spatial heterogeneity across shell

surfaces (Figure 1) during the profiling experiment, foraminiferal

specimens (n = 2) were profiled in 2–4 locations on their calcite

shell during the experiment (indicated by red crosses in Figure 1).

To determine possible treatment effects on O2 dynamics and to

evaluate exact placement of microsensor tips for consecutive

measurements, individuals were profiled with O2 microsensor at

432 matm in light, prior to each treatment incubation. Profiling

experiments were conducted at a pCO2 of 432 matm (pH of 8.22;

ambient), 1142 matm (pH 7.85) and 2151 matm (pH 7.60) with

photosymbiotic species, and at two pCO2 levels (432 and

2151 matm) with symbiont-free individuals (Table 1). After 24 h

of incubation, microsensor measurements across the DBL of all

specimens in both light (30 mmol photons m22 s21) and darkness

were conducted for O2 on day 2, pH on day 3, and Ca2+ on day 4.

Monitoring of Treatments
Seawater was renewed for each experimental treatment and

kept at a constant salinity (35) and pH according to the treatment

(Table 1). Temperature, pH, DIC, total silicate and total

phosphorus were monitored daily. DIC samples were filtered

(0.2 mm nylon filters), stored gas tight, head-space free at 4uC and

analysed within a week by flow injection analysis [35]. Samples for

nutrient analyses (including total silicate and phosphorus) were

filtered (0.2 mm nylon filters), immediately frozen and consequent-

ly analysed with a Bran and Luebbe AA3 segmented flow analyzer

(Norderstedt, Germany) following Ryle et al. [36]. Samples for

total alkalinity (TA) were taken at the end of each experiment,

filtered (0.2 mm nylon filters), poisoned with HgCl2 and kept at

4uC until being shipped to the University of Sydney, where they

were analysed by open cell potentiometric titration [37], and

calculated using linear Gran plots [38]. Corrections were applied

based on certified reference material (A. Dickson, Scripps

Institution of Oceanography, CA, USA).

Assessment of Individuals
For microsensor measurements, healthy, intact foraminiferal

specimens of similar size and pigment shading were selected and

liveliness confirmed in all individuals by the observation of

movement. Individuals were photographed (Canon 30D, Tokio,

Japan) via the dissecting microscope, before and after the

experimental treatments (for complete sets, see Figure S1, S2,

S3). At the end of the experiments, individuals were examined and

photographed under a fluorescence microscope (Axioskop mot

plus, Carl Zeiss, Goettingen, Germany) equipped with a digital

camera (AxioCamMRc5, Carl Zeiss, Goettingen, Germany).

Fluorescence images were obtained using a halogen lamp for

incident light and DAPI (excitation, G365 nm; dichroic mirror

FT395; emission LP420 nm) and FITC (excitation, BP 450–

490 nm; dichroic mirror FT510; emission LP515 nm) filter sets

(Carl Zeiss, Goettingen, Germany). Foraminiferal sizes (longest

diameter) were measured in small individuals from microscopic
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images by the software AxioVision (version 4.8.1, Carl Zeiss,

Goettingen, Germany) and in large individuals via a digital

calliper.

Carbonate Chemistry Calculations
Calculations based on measurements of DIC, pH, temperature,

salinity, total-phosphate and silicate (Table 1) were performed in

CO2SYS [39], using K1 and K2 according to Millero et al. [40],

with dissociations constants for H2SO4 detailed in Dickson [41].

Measured and calculated levels of total alkalinity deviated ,0.2%,

indicating that carbonate chemistries were in equilibrium

throughout the experiments (Table 1).

Data and Statistical Analysis
Hydrogen ion (H+) concentrations for dilute aqueous solutions

were calculated from pH levels. Differences in concentrations

between the bulk seawater and the surface of the shells, denoted as

DO2, DH+ and DCa2+, were attained from the measured profiles.

Concentration differences were calculated as the lowest and

highest spatial points of the profiles respectively. At very low

metabolic rates and therefore increased resolution, profile noise

was balanced by a line of best fit through the seawater baseline

concentrations, and DBL gradients, to attain concentration

differences. Since microsensor measurements of O2, pH and

Ca2+ were performed consecutively on different days, they did not

depict true spatial replicates of one location (see also discussion

‘Variability of microsensor measurements’). Measurement position

differences of DO2, DH+ and DCa2+ within individuals (Figure 1)

were found to be non-significant. Consequently profiles (n = 2–4)

were averaged for every individual for statistical analyses.

Means of DO2, DH+ and DCa2+ over replicate profiles per

individual were tested for normality and homogeneity of variances

by normality plots and Levene’s tests, respectively. Since parametric

assumptions were violated, complete data sets of mean DO2, DH+

and DCa2+ were analyzed by Kruskal-Wallis one way analysis of

variance, and alpha levels Bonferroni corrected (Table 2). Group

comparisons were performed using Wilcoxon signed rank test

(WSRT) for paired samples, Kruskal-Wallis one way analysis of

variance and Wilcoxon rank sum tests ( = Mann Whitney U-tests)

for unpaired samples, respectively. The ratios of mean DO2/DH+ of

all individuals were compared across pCO2 treatment groups using

generalized linear models (GLMs). All statistical analysis used the

software R [42] or SPSS 13.0 (IBM, Armonk, NY, USA).

Results

Individual Fitness
Both Heterostegina depressa at 2151 matm and Amphistegina radiata

individuals at 1141 and 2151 matm showed visual signs of

symbiont loss (i.e. bleaching) at the end of the 4 day incubations

(Figure S2, S3). In A. radiata, bleaching was accompanied by severe

symbiont clumping within the cell body.

Zero-flow Experiment
Within 30 sec after flow was turned off, no visible horizontal

particle movement could be detected. Within 5 min after turning

off the flow, pH gradients started increasing and after 100 min

DBLs extended up to 1400 mm into the bulk seawater, reaching a

maximum pH of 8.89 (1.29 nM of H+) at the surface of the shell

(Figure 2). After flow was resumed, DBLs immediately reverted

back to normal steady state conditions.

O2 Microenvironment around Foraminiferal Tests
Due to their convex shapes, all foraminifera except for

M. vertebralis had only few contact points with the bottom of the

flow cell during the measurements. The effective thickness of the O2

DBL [21] on the tests (mean: 395631 mm SE) ranged between 150

to 850 mm (Figure 1). In phototrophic specimens, DBL thickness

was laterally enlarged where symbiont densities, and therefore

photosynthetic activity, was higher than at the central part of the

test. In A. radiata, H. depressa and Peneroplis sp., DBLs were also

enlarged at the upstream edges. Differences of O2 between the shell

surface and the bulk seawater, denoted as DO2, varied across the

shell and among individuals, and were generally strongly elevated in

photosymbiotic, and slightly reduced in symbiont-free species. The

downstream edge of M. vertebralis, in which symbionts were sparse,

exhibited a slight O2 under-saturation.

Time Replicated O2 Dynamics within Individuals under
Illumination

Within individuals, mean DO2 at 432 matm (control measure-

ments) remained constant, indicating the absence of confounding

Table 2. Omnibus Kruskal-Wallis one way analysis of variance results of mean (n = 2–4) DO2, DH+ and DCa2+ measured during
three pCO2 treatment incubations (432, 1141, 2151 matm) for different factors.

DO2 (mM)a DH+ (nM)a DCa2+ (mM)a

X2 df p X2 df p X2 df p

pCO2 treatment 0.0550 2 0.9729 14.8627 2 0.0006 2.1433 1 0.1432

illumination 44.175 1 3.00e211 14.4391 1 0.0001 0.3827 1 0.5362

trophic levelb 0.2462 1 0.6198 13.0502 1 0.0003 0.9686 1 0.3250

species 0.4675 5 0.9933 16.4631 5 0.0056 2.6097 5 0.7599

symbiont typec 0.3052 3 0.9591 15.6138 3 0.0014 2.5392 3 0.4682

treatment groupsd 60.286 31 0.0012 58.0442 31 0.0023 12.556 23 0.9610

Significant effects at the Bonferroni corrected 0.83% levels are indicated in bold.
aD denotes the difference in O2, H+ and Ca2+ respectively between the surface of shell and the bulk seawater determined by microsensor profiling (n = 2–4), averaged
over each individual.
blevels: photosymbiotic, heterotrophic.
clevels: diatoms (Amphistegina radiata, Heterostegina depressa), dinoflagellates (Marginopora vertebralis), red algae (Peneroplis sp.), no symbionts (Quinqueloculina sp.,
Miliola sp.).
dtreatment groups represent each combination of species, pCO2, and light phase, according to box-plots represented in Figure 5, 6 and Figure S4.
doi:10.1371/journal.pone.0050010.t002
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factors (WSRT, V = 33, p-value = 0.677, Figure 3). Only in

M. vertebralis at 432 and 2151 matm did DO2 variability increase

from prior to during the incubations (Figure 3). This confirms that

the repeated placement of microelectrodes on individuals did not

affect readings. Variation in DO2 between individuals was greater

for photosymbiotic than for symbiont-free species (Figure 3) and

highest for M. vertebralis (all pCO2 treatments), A. radiata (prior to the

incubation) and H. depressa (prior to and during the incubation) at

2151 matm. Under illumination mean DO2 was significantly

elevated at all pCO2 treatments in photosymbiotic, compared to

symbiont free species (4468 mM, vs. 20.00260.753 mM

(mean6SE), U-test: W = 0, p = 1.90e207). Beside individuals that

exhibited symbiont loss, mean DO2 of photosymbiotic species did

not change significantly between elevated and control pCO2

(WSRT: V = 11, p = 0.106). In A. radiata, which displayed severe

visual signs of bleaching, DO2 was strongly decreased at

2151 matm (Figure S3). DO2 of symbiont-free individuals re-

mained usually negative, very low and similar at both pCO2

treatments. Yet, some profiles of positive DO2 (i.e. net photosyn-

thesis) were measured in both Quinqueloculina (at 2151 matm) and

Miliola specimens (Figure 3). Subsequent fluorescence imaging

revealed chlorophyll autofluorescence of epiphytes on the shell

surfaces of these symbiont-free individuals (Figure 4).

O2, H+ and Ca2+ Dynamics within and between
Treatment Groups

Illumination significantly increased mean DO2, and decreased

mean DH+ in photosymbiotic, compared to symbiont-free species

at all pCO2 and between light and dark, indicating net

photosynthesis (Table 2, Figure 5, 6). Beside A. radiata specimens,

which strongly bleached at the highest pCO2 level (Figure S3),

mean DO2 in light did not change significantly between pCO2

treatments (Kruskal Wallis: X2 = 1.8584, df = 2, p = 0.395). In

darkness mean DO2 was negative in all photosymbiotic species

indicating respiration (21163 mM), which was enhanced in

M. vertebralis and H. depressa at 1141 matm and reduced in A.

radiata at increased pCO2 (Figure 5). Symbiont-free species showed

net respiration in both light and dark (21.1760.54 mM).

In contrast to DO2, mean DH+ was significantly affected by

pCO2 treatment, trophic level, species and symbiont-type (Table 2).

Under illumination, mean DH+ of all photosymbiotic species

decreased with increasing pCO2 (21.6760.35 nM at 432 matm vs.

23.5360.66 nM at 2151 matm, Figure 6), with the exception of

Peneroplis individuals, where net photosynthesis was low and

variable between the pCO2 treatments (Figure 5). In darkness at

432 matm, mean DH+ (0.07060.019 nM) of all species was slightly

increased indicating net respiration. Yet, all photosymbiotic

species showed a negative mean DH+ at elevated pCO2 conditions

in darkness (20.8860.21 nM, Figure 6). DH+ of symbiont-free

species was generally much lower in light (20.2060.15 nM),

compared to photosymbiotic species and also slightly negative at

2151 matm at both light levels (20.4960.17 nM).

Changes in mean DCa2+ were generally very low and exhibited

high variation in space and time (39624 mM). Mean DCa2+ did

not change significantly with any of the measured factors (Table 2,

Figure S4). At 2151 matm mean DCa2+ was still not significantly

different from 0 (23629 mM), indicating no net CaCO3 dissolu-

tion or Ca2+ uptake.

Ratios of Mean DO2/DH+ Across pCO2 Treatments
Mean DO2 (i.e. netPS or respiration) and DH+ were both quite

variable across profiles within and across individuals (Figure 7).

Yet, there was a significant linear correlation between mean DO2

and mean DH+ (R2$0.63, ptm,0.0166) per individual for all

photosymbiotic species, but not in symbiont-free species (Table 3).

The intercepts of the DO2/DH+ correlations were significantly

decreased at increased pCO2, except in H. depressa (Figure 7,

Table 3). In symbiont-free species, mean DO2 did not strongly

Figure 2. Temporal pH and H+ development of diffusive boundary layer (DBL) of Marginopora vertebralis, measured consecutively at
a single position on the calcite shell at a pCO2 of 432 matm, 30 mmol photons m22 s21 under zero flow conditions after flow (0.5 cm
s21) was cut off at time = 0.
doi:10.1371/journal.pone.0050010.g002
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correlate with DH+ (R2#0.76, ptm.0.101), nor were intercepts

and slopes of the regressions significantly different between the two

pCO2 treatments. Interestingly, DH+ of all linear regressions at

DO2 = 0 was negative (range: 23.193 to 20.063 nM), beside

Quinqueloculina at 432 matm, indicating that H+ concentrations on

the foraminiferal surface are slightly decreased compared with the

bulk seawater when the net O2 flux equals zero.

Discussion

DO2, DH+ and DCa2+ Dynamics
To test whether OA induced increases of seawater DIC enhance

photosynthesis of photosymbiotic foraminifera and consequently

result in increased pH levels within their microenvironments, we

conducted microenvironmental O2 and pH measurements of

photosymbiotic and symbiont-free foraminifera. In light, net O2

evolution (photosynthesis) within the DBL of photosymbiotic

species remained relatively unaffected by the pCO2 treatments and

surface pH was significantly increased. Yet, H+ differences (DH+)

were significantly enlarged within the DBL with increasing pCO2.

However, the H+ decreases only amounted to ,27% (at

432 matm) and ,14% (at 2151 matm) of the ambient seawater

H+ concentration. Photosynthesis was thus was insufficient to

compensate for the more than four-fold increased ambient H+

concentrations between the highest and lowest pCO2 treatment

(Table 4). Rates of net photosynthesis of marine phototrophs

primarily depend on temperature, nutrients and light availability,

as well as the efficiency of the individual carbonate concentration

mechanisms (CCMs, [43–45]). Except for bleached individuals,

DO2 (i.e. net photosynthesis) was not influenced by pCO2 in any

species (Table 2, Figure 3). Since light levels were saturated and

nutrient concentrations and temperature remained constant

throughout each treatment, this may indicate either that the

photosynthesis of photosymbiotic foraminifera was CO2 saturated

at ambient pCO2 concentrations, or that a down-regulation of DIC

uptake occurred at increased pCO2. This notion is in agreement

with previous studies on diatoms [46,47] and Symbiodinium sp., both

in culture and in hospite of corals [48,49] and foraminifera [50],

displaying a down-regulation of CCMs and only slight effects of

increased DIC on net O2 evolution. Since there is no indication

that the photosynthetic quotient (O2/CO2, [51]) of the holobiont

was altered at increased pCO2, DIC uptake should have been

Figure 3. Box-plots representing the 25th, 50th and 75th percentiles of DO2, calculated from profiles measured within individuals
(n = 2) prior (at 432 matm) and during pCO2 treatment incubations (432, 1141, 2151 matm), under illumination (30 mmol photons
m22 s21) for the six foraminiferal species. Note the different scales between A) photosymbiotic and B) symbiont-free species. Outliers (.1.5
interquartile range) are indicated by circles.
doi:10.1371/journal.pone.0050010.g003

Figure 4. Exemplary microscopic images of Quinqueloculina (A, B) and Miliola (C, D) specimen profiled at 2151 matm. (A, C) Chlorophyll
autofluorescence (red) of phototrophic epiphytes on the calcite shell under green excitation light (FITC-filter set).
doi:10.1371/journal.pone.0050010.g004
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Figure 5. Box-plots representing the 25th, 50th and 75th percentiles of DO2, calculated from profiles measured during the pCO2

treatment incubations, at light (30 mmol photons m22 s21) and dark conditions for the six foraminiferal species. Note the different
scales between A) photosymbiotic and B) symbiont-free species. Outliers (.1.5 interquartile range) are indicated by circles.
doi:10.1371/journal.pone.0050010.g005
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Figure 6. Box-plots representing the 25th, 50th and 75th percentiles of DH+, calculated from profiles measured during the pCO2

treatment incubation, at light (30 mmol photons m22 s21) and dark conditions for individual species. Note the different scales between
A) photosymbiotic and B) symbiont-free species. Outliers (.1.5 interquartile range) and extreme values (.3 times interquartile range) are indicated
by (O) and (*) respectively.
doi:10.1371/journal.pone.0050010.g006
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Figure 7. Relationship between mean DH+ and DO2 at different pCO2 treatment groups for light (30 mmol photons m22 s21) and dark
conditions. Each point represents an individual foraminiferal test (mean 6 SE, n = 2–4). Solid lines indicate linear correlations for the different pCO2

treatment groups, dashed lines indicate the respective DO2 and DH+ zero-lines.
doi:10.1371/journal.pone.0050010.g007

O2 and pH Microenvironments at High pCO2

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e50010



constant. Increases of pCO2 on the other hand, cause a decrease in

the CO2 uptake capacity of seawater (i.e. an increase of the

Revelle factor, Table 1). This results in larger shifts of CO2(aq), thus

H+ concentrations in response to constant DIC production2/

consumption-rates (for an extensive discussion of this aspect of

carbon chemistry see [18,52] and [53] Chapter 1.5). This will lead

to stronger H+-gradients in response to constant photosynthesis/

respiration rates at elevated pCO2, as indicated by the results

(Figure 6; see also [18]). It is supported by the linear regression

analyses, displaying a significant pCO2 treatment effect on mean

DO2/DH+ of most photosymbiotic species (Table 3), and by

previous modeling results of microenvironmental dynamics

around phytoplankton, showing increased microenvironmental

H+ variability at elevated pCO2 [18].

The decreases of DO2, observed between 432 matm and the

elevated pCO2 conditions in A. radiata at 1141 and 2151 matm and

H. depressa at 2151 matm (Figure 3), are most likely the cause of

increased symbiont loss (i.e. bleaching) at elevated pCO2 (Figure

S2, S3, [54], [55]). Additionally, bleaching and spatial variability

of symbionts (see ‘variability of microsensor measurements’) in A.

radiata and H. depressa resulted in severe symbiont clumping and

increased heterogeneity of DO2 and DH+ across their shells. This

might have led to an overestimation of the mean H+ difference

(DH+) in light, in respect to the mean O2 difference (DO2), by

profiling areas of high symbiont densities with pH sensor and areas

of low symbiont density with O2 sensors (Figure 5, 6). This might

explain why decreases of the DO2/DH+ intercepts in response to

increased pCO2 were less significant in A. radiata and slightly non

significant in H. depressa, compared to all other photosymbiotic

species (Figure 7, Table 3).

In dark, respiratory changes of DO2 and DH+ at 432 matm were

minor (Figure 5, 6). This is in agreement with previous

microsensor measurements on foraminifera and diatoms

[14,15,56], indicating that net respiratory O2 fluxes are generally

very low in these protists.

Interestingly, microenvironmental H+ concentrations of all

species were slightly decreased in darkness, compared to the bulk

seawater at elevated pCO2 (Figure 6). One possible reason for this

may be the dissolution of the calcite shell at elevated pCO2 in

darkness, causing a local increase in pH [53]. However, this is

unlikely, due to the absence of significant Ca2+ fluxes (Figure S4),

and since VCa was super-saturated at even the highest pCO2

(Table 1), indicating no net calcite dissolution. Another possibility

could be the continued uptake of CO2(aq) (.10 min) in the dark

for CO2 fixation in the calvin cycle. This would however imply

that CO2(aq) uptake and fixation of the holobiont outweighed

respiratory CO2(aq) production in darkness. A third explanation

could be that foraminifera actively up-regulate their microenvi-

ronmental pH in darkness, via active proton pumping or

antiporter exchange [23,57] into the cell, to compensate for

increased seawater pCO2 and to maintain pH homeostasis for vital

cellular functions. A fourth explanation could be the excretion of

nitrogen waste by the foraminifera in the dark in the form of NH3,

which would elevate microenvironmental alkalinity, thus increase

pH. The excretion of NH3 is widely distributed among marine

protists [58–59] and might be increased at elevated pCO2, due to

increased energy demands and nutrient uptake.

Mean DCa2+ over the shell surface was very low, but single

profiles displayed strong gradients (Figure S4). Calcification in

foraminifera, i.e. chamber formation, is discontinuous and

sensitive to mechanical disturbances [23,60,61]. Due to the

experimental handling it can be excluded that individuals were

calcifying or preparing for chamber formation .2 h before and

after the measurements. Increased Ca2+ uptake due to calcification

was therefore not expected. The measured high variability and

averaged low fluxes of DCa2+ over the shell surface are in

accordance with previous microsensor measurements on tropical

(Marginopora vertebralis, Amphistegina lobifera, [15]) and temperate

benthic (Ammonia sp., [23]) and planktonic (Orbulina universa, [16])

Table 3. Relationships between DO2 and DH+ per individual
within each species at different pCO2 treatments (Figure 7).

Estimate SE t p R2 ptm

Marginopora vertebralis

Intercept 236.005 12.244 22.941 0.0187 0.80 0.0036

DO2 0.0116 0.1612 0.072 0.9446

pCO2 treatment 4.3394 1.5518 2.796 0.0233

DO2 : pCO2 treatment 20.0045 0.0204 20.222 0.8299

Amphistegina radiata

Intercept 228.620 11.744 22.437 0.0408 0.70 0.0166

DO2 21.0420 0.5022 22.075 0.0717

pCO2 treatment 3.4731 1.4950 2.323 0.0487

DO2 : pCO2 treatment 0.1237 0.0622 1.989 0.0819

Heterostegina depressa

Intercept 214.865 6.4727 22.297 0.0507 0.85 0.0012

DO2 0.1693 0.3218 0.526 0.6132

pCO2 treatment 1.7840 0.8203 2.175 0.0613

DO2 : pCO2 treatment 20.0283 0.0417 20.680 0.5159

Peneroplis sp.

Intercept 213.038 3.7634 23.464 0.0085 0.63 0.0371

DO2 0.8398 0.2972 2.826 0.0223

pCO2 treatment 1.5781 0.4768 3.310 0.0107

DO2 : pCO2 treatment 20.1090 0.0382 22.853 0.0214

Quinqueloculina sp.

Intercept 26.7470 5.7909 21.165 0.309 0.66 0.1885

DO2 21.8837 1.9174 20.982 0.382

pCO2 treatment 0.8514 0.7536 1.130 0.322

DO2 : pCO2 treatment 0.2333 0.2498 0.934 0.403

Miliola sp.

Intercept 25.3733 4.0374 21.331 0.254 0.76 0.1006

DO2 3.9626 2.7794 1.426 0.227

pCO2 treatment 0.6460 0.5145 1.256 0.278

DO2 : pCO2 treatment 20.4918 0.3538 21.390 0.237

R2 constitutes the multiple R2 explaining total variance of the overall model.
Ptm depicts the significance of the total model. Linear-model results with
significant effects at the 5% level are indicated in bold.
doi:10.1371/journal.pone.0050010.t003

Table 4. Ambient H+ concentrations and microenvironmental
H+ differences (DH+) of photosymbiotic foraminifera at
saturated light conditions (mean6SE).

pCO2 treatment ambient H+ (nM)
DH+

(nM)

432 matm 6.0660.07 21.6760.35

1141 matm 14.360.17 22.9260.63

2151 matm 24.960.77 23.5360.66

doi:10.1371/journal.pone.0050010.t004
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specimens. This indicates that Ca2+ exchange varies over time and

is not evenly distributed over the shell surface for most

foraminifera, but very localized. As Ca2+ is an important cellular

ionic regulator and cytotoxic at increased cellular concentrations

[62], its exchange via Ca2+ channels in the protoplasmic

membrane must be highly regulated. Distribution of Ca2+

channels and Ca2+ fluxes over the foraminiferal surface are most

likely patchy. Ca2+ gradients would therefore only affect a small

percentage of the total foraminiferal surface area, which would

lead to the generally low total Ca2+ fluxes, but high variability in

different profiles as observed (Figure S4).

Characterizing the Foraminiferal Microenvironment
O2 and pH DBL dynamics of photosymbiotic foraminifera and

other photosynthetic calcifiers correlate in response to illumination

changes, with pH dynamics exhibiting a temporal time lag

following O2 dynamics [13,16,17,19].

The extent to which surface O2 and pH on the organisms’

surface deviate from the bulk seawater depends on multiple

factors, such as the photosynthetic activity of the organism,

surrounding seawater flow, seawater H+-buffering capacity,

diffusivity/permeability of CO2 from its source – spatial config-

uration of symbiont and host, diffusional transport constrains (1–

3D) and the 3D surface structure of the location [15,17,21,53,63].

Since carbonate chemistry remained constant throughout the

treatments (Table 1), most prominent factors during the experi-

ment influencing DBL dynamics, included diffusional transport

constrains to and from the symbionts, micro-flow surface dynamics

and location specific rates of net photosynthesis and respiration.

This is illustrated by the spatial extent of the DBLs (Figure 1, 2).

The thickness of the DO2 DBL clearly decreases along middle

ridges of individuals, where laminar flow velocity was highest

[64,65] and underlying photosynthesis was lower, due to decreased

symbiont density in that region, compared to lateral symbiont-rich

parts (Figure 1, Figure S1). M. vertebralis specimens showed the

steepest O2 and pH gradients, without enlarged DBL thickness

(i.e. net O2 fluxes), indicating overall increased photosynthesis

compared to all other species (Figure 1, 3, 5). Yet, ventral sides of

M. vertebralis specimens locked tightly on to the inert surface of the

flow chamber, thereby creating a one-dimensional diffusional

barrier. The strong O2 and pH microgradients of M. vertebralis can

therefore not solely be attributed to increased photosynthesis but

emerge as a combination of the underlying photosynthesis, flat

surface structure (and thereby almost parallel horizontal emerging

flow field), as well as one-dimensional diffusional resistance.

Variability of Microsensor Measurements
Measurement variability was high, but much higher between,

than within individuals (Figure 3, 5, 6, 7), allowing for temporal

replication of microsensor measurements. Variability was not

unexpected due to the typically high spatial variability of O2 fluxes

and pH dynamics across the surface of photosynthetic organisms

(Figure 1, [15,19–21,65]) in combination with the high spatial

resolution of the microsensor measurements (reviewed in [28]).

Another source of variability is due to the fact that some

foraminiferal species, including M. vertebralis and H. depressa,

actively transport their symbionts within their cell bodies and

individual chamberlets [66,67], resulting in higher variation of

DO2 (Figure 3) and consequently DH+ over time for a specific spot

on their shell surface. Spatial variability of DO2 and consequently

DH+ (and their means), measured within and among the

individuals, was therefore expected. Yet, spatial heterogeneity

within individuals (Figure 1) was not represented in the sampling,

since measurement positions were not significantly different. Also

DO2, measured before and during the 432 matm treatment under

equal conditions (Figure 3) within the same individuals, remained

relatively constant, confirming that the spatial placement of

microelectrode measurements could be replicated.

Mixed Responses of Ocean Acidification Experiments
Several studies have reported contrary responses of increased

pCO2 on both photosynthesis and calcification on a variety of

marine taxa [11,12,68–70], even within phyla (reviewed in Doney

et al. [1]). Possible causes for such variability are diverse,

potentially including differences in calcifying-/carbonate concen-

tration mechanisms and their coupling, tolerance levels, adapta-

tion mechanisms, but also differences in the experimental designs

and setups. Consequently, a comparison among ocean acidifica-

tion studies, even within phyla, is difficult. Especially flow, as an

important experimental parameter influencing the surface pH of

organisms, has not been considered in many ocean acidification

experiments. Yet, flow changes are well known to severely impact

microenvironmental pH levels of photosymbiotic foraminifera

(Figure 2, [15]) and other phototrophs in light [19,20,63]. The

changes in surface pH are especially severe within static culture

experiments, where DpH can change up to .1 unit (.5 nM of

H+, Figure 2, [15,71]). Zero-flow conditions for ocean acidification

studies should therefore be avoided, as they are ecologically

unrealistic and also confuse the carbonate chemistry of the

intended pCO2 perturbation, causing unrealistically high/low

microenvironmental pH conditions in light/dark, despite in-

creased DIC levels.

Effects of Ocean Acidification on Benthic Foraminifera
It appears that benthic foraminifera do not show uniform

responses to low pH conditions [50,70,72–82]. While most

laboratory studies investigating calcification in symbiont-free

foraminifera showed decreases in calcification rate [72,74,75,82]

larger photosymbiotic foraminifera show more variable responses

[50,70,76,77]. Also, experiments conducted under low and

stagnant flow conditions exhibit mostly decreases in calcification

rate [70,72–75,82], while experiments applying higher rates of

turbulent mixing show variable responses on rates of calcification,

net photosynthesis and respiration ([50,76,77], this study). Thus

calcification responses seem to correlate to some extend with the

experimental flow conditions as suggested for corals (reviewed in

[83]). While for symbiont-free shallow infaunal/epibenthic fora-

minifera low flow conditions (,0.1 cm s21) represent ecological

realistic values, mimicking pore-water flow and sediment surface

friction velocities [23,74,75,82] this is not the case for most

epibiotic photosymbiotic species (also discussed in [50]). However,

since experimental conditions are quite variable among the

different studies, e.g. acid base manipulations, thus TA manipu-

lations [72–74], versus pCO2, thus DIC manipulations ([50,70,75–

77,82], this study), a direct correlation between experimental flow

conditions and calcification responses remains speculative. Yet, the

here presented results strongly indicate that especially for larger

benthic photosymbiotic foraminifera, the interplay between flow

and net photosynthesis has severe impacts on microenvironmental

pH, thus microenvironmental DIC availability.

Some of the observed variability in calcification responses of

photosymbiotic foraminifera to OA are likely due to differences in

calcification mechanism (also discussed in [84–86]), as well as

solubility differences of the calcite tests [87,88] of the different

groups. This is represented in the literature showing unaffected or

increased calcification rates in hyaline (low Mg-calcite: less soluble)

and decreased rates in miliolid (high Mg-calcite: more soluble)

species in response to elevated pCO2 [70,73,76,77]. These taxa
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specific differences are in line with previous studies on foraminif-

eral DIC uptake mechanism, showing almost linear increases in

miliolid Amphisorus hemprichii and almost no change in Amphistegina

lobifera in response to increasing DIC (and CO3
22) concentrations

in the OA range between 2 and 3 mM ([84], also discussed in

[76]). Additionally, these ideas are supported by recent field

studies investigating foraminiferal assemblages at volcanic CO2

vents in the Mediterranean [79,81] and in tropical coral reefs [80].

The studies in the Mediterranean reported significantly reduced

numbers of calcareous species, a complete absence of miliolid and

only the presence of hyaline species at elevated pCO2 [79,81]. The

study investigating cold CO2 seeps within tropical coral reefs

reported almost complete absence of the larger epibiotic miliolid

species Marginopora vertebralis and reduced species richness and

diversity of sedimentary foraminifera at high pCO2 sites [80]. A

very recent study investigated symbiont-free hyaline foraminiferal

assemblages in a CO2 enriched, benthic habitat in the southwest-

ern Baltic Sea [78]. This study showed that mainly sediment VCa

under-saturation, rather than the pCO2 levels of the sediments,

determines the population density of the benthic shallow infaunal

species Ammonia ammoriensis, yet not of Elphidium incertum [78].

These findings support the idea of increased resistance/adaptation

of hyaline species within their natural habitat to high pCO2

conditions, compared to miliolid species.

The findings of this study indicate that photosynthesis can only

to a minor extend compensate for ambient seawater pH decreases

within the microenvironment of photosymbiotic foraminifera

(Table 4). Symbiont-free and photosymbiotic foraminifera are

thus likely to experience strongly decreased microenvironmental

pH conditions at future pCO2, making their cell bodies susceptible

to the physiological effects of ocean acidification.

Supporting Information

Figure S1 Close up of the six foraminiferal species,
photographed via dissecting microscope (A–E) and back-
light microscope (F). Images were taken after control

(432 matm) treatment incubations. A) Marginopora vertebralis, B)

Amphistegina radiata, C) Heterostegina depressa, D) Peneroplis sp., E)

Quinqueloculina sp. and F) Miliola sp. individuals. Sizes are stated as

largest possible diameter of individuals.

(TIF)

Figure S2 Close up dissecting microscope images,
taken before (432 matm) and after the 1141 matm treat-
ment incubation. A) Marginopora vertebralis, B) Amphistegina radiata,

C) Heterostegina depressa, D) Peneroplis sp., individuals. Sizes are given

as largest possible diameter of individuals. In A. radiata, areas of

bleaching are indicated by white dashed circles.

(TIF)

Figure S3 Close up dissecting microscope images,
taken before (432 matm) and after the 2151 matm treat-
ment incubation. A) Marginopora vertebralis, B) Amphistegina radiata,

C) Heterostegina depressa, D) Peneroplis sp., individuals. Sizes are stated

as largest possible diameter of individuals. Both A. radiata and H.

depressa showed signs of bleaching. Symbiont clumping in A. radiata

is indicated by white dashed circles.

(TIF)

Figure S4 Box-plots representing the 25th, 50th and 75th

percentiles of DCa2+, calculated from profiles measured
during the pCO2 treatment incubation, at light (30 mmol
photons m22 s21) and dark conditions for individual
species. Note the different scales between A) photosymbiotic and

B) symbiont-free species. Outliers (.1.5 interquartile range) and

extreme values (.3 times interquartile range) are indicated by (O)

and (*) respectively.

(TIF)
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