175 research outputs found
Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus
Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but not SV40 LT. hVam6p binds through its clathrin heavy chain homology domain to a unique region of MCV LT adjacent to the retinoblastoma binding site. MCV LT translocates hVam6p to the nucleus, sequestering it from involvement in lysosomal trafficking. A naturally occurring, tumor-derived mutant LT (MCV350) lacking a nuclear localization signal binds hVam6p but fails to inhibit hVam6p-induced lysosomal clustering. MCV has evolved a novel mechanism to target hVam6p that may contribute to viral uncoating or egress through lysosomal processing during virus replication
Understanding the core density profile in TCV H-mode plasmas
Results from a database analysis of H-mode electron density profiles on the
Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the
logarithmic electron density gradient increases with collisionality. By
contrast, usual observations of H-modes showed that the electron density
profiles tend to flatten with increasing collisionality. In this work it is
reinforced that the role of collisionality alone, depending on the parameter
regime, can be rather weak and in these, dominantly electron heated TCV cases,
the electron density gradient is tailored by the underlying turbulence regime,
which is mostly determined by the ratio of the electron to ion temperature and
that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch
can significantly contribute to the density peaking. Qualitative agreement
between the predicted density peaking by quasi-linear gyrokinetic simulations
and the experimental results is found. Quantitative comparison would
necessitate ion temperature measurements, which are lacking in the considered
experimental dataset. However, the simulation results show that it is the
combination of several effects that influences the density peaking in TCV
H-mode plasmas.Comment: 23 pages, 12 figure
Oxidative stress and phosphatidylserine exposure in red cells from patients with sickle cell anaemia.
Phosphatidylserine (PS) exposure increases as red cells age, and is an important signal for the removal of senescent cells from the circulation. PS exposure is elevated in red cells from sickle cell anaemia (SCA) patients and is thought to enhance haemolysis and vaso-occlusion. Although precise conditions leading to its externalisation are unclear, high intracellular Ca2+ has been implicated. Red cells from SCA patients are also exposed to an increased oxidative challenge, and we postulated that this stimulates PS exposure, through increased Ca2+ levels. We tested four different ways of generating oxidative stress: hypoxanthine and xanthine oxidase, phenazine methosulphate, nitrite and tert-butyl hydroperoxide, together with thiol modification with N-ethylmaleimide (NEM), dithiothreitol and hypochlorous acid (HOCl), in red cells permeabilised to Ca2+ using bromo-A23187. Unexpectedly, our findings showed that the four oxidants significantly reduced Ca2+ -induced PS exposure (by 40-60%) with no appreciable effect on Ca2+ affinity. By contrast, NEM markedly increased PS exposure (by about 400%) and slightly but significantly increased the affinity for Ca2+ . Dithiothreitol modestly reduced PS exposure (by 25%) and HOCl had no effect. These findings emphasise the importance of thiol modification for PS exposure in sickle cells but suggest that increased oxidant stress alone is not important.We thank the British Heart Foundation for generous financial support (grant number 31966)
The influence of obesity and body mass index on the outcome of laparoscopic colorectal surgery: a systematic literature review
AIM: The relationship between obesity, body-mass index (BMI) and laparoscopic colorectal resection is unclear. Our object was to assess systematically the available evidence to establish the influence of obesity and BMI on the outcome of laparoscopic colorectal resection. METHOD: A search of PubMed/Medline databases was performed in May 2015 to identify all studies investigating the impact of BMI and obesity on elective laparoscopic colorectal resection performed for benign or malignant bowel disease. Clinical end points examined included operation time, conversion rate to open surgery, post-operative complications including anastomotic leakage, length of hospital stay, readmission rate, reoperation rate and mortality. For patients who underwent an operation for cancer, the harvested number of lymph nodes and long-term oncological data were also examined. RESULTS: 45 studies were analysed, the majority of which were Level IV with only four level III case-controlled studies. Thirty comparative studies containing 23649 patients including 17895 non-obese and 5754 obese showed no significant differences between the two groups with respect to intraoperative blood loss, overall postoperative morbidity, anastomotic leakage, reoperation rate, mortality and the number of retrieved lymph nodes in patients operated on for malignancy. Most studies, including 15 non-comparative studies, reported a longer operation time in patients who underwent a laparoscopic procedure with the BMI being an independent predictor in multivariate analyses for the operation time. CONCLUSION: Laparoscopic colorectal resection is safe and technically and oncologically feasible in obese patients. These results, however, may be different outside high volume centres of expertise. This article is protected by copyright. All rights reserved
Cowpox Virus Outbreak in Banded Mongooses (Mungos mungo) and Jaguarundis (Herpailurus yagouaroundi) with a Time-Delayed Infection to Humans
BACKGROUND:Often described as an extremely rare zoonosis, cowpox virus (CPXV) infections are on the increase in Germany. CPXV is rodent-borne with a broad host range and contains the largest and most complete genome of all poxviruses, including parts with high homology to variola virus (smallpox). So far, most CPXV cases have occurred individually in unvaccinated animals and humans and were caused by genetically distinguishable virus strains. METHODOLOGY/PRINCIPAL FINDINGS:Generalized CPXV infections in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus yagouaroundi) at a Zoological Garden were observed with a prevalence of the affected animal group of 100% and a mortality of 30%. A subsequent serological investigation of other exotic animal species provided evidence of subclinical cases before the onset of the outbreak. Moreover, a time-delayed human cowpox virus infection caused by the identical virus strain occurred in a different geographical area indicating that handling/feeding food rats might be the common source of infection. CONCLUSIONS/SIGNIFICANCE:Reports on the increased zoonotic transmission of orthopoxviruses have renewed interest in understanding interactions between these viruses and their hosts. The list of animals known to be susceptible to CPXV is still growing. Thus, the likely existence of unknown CPXV hosts and their distribution may present a risk for other exotic animals but also for the general public, as was shown in this outbreak. Animal breeders and suppliers of food rats represent potential multipliers and distributors of CPXV, in the context of increasingly pan-European trading. Taking the cessation of vaccination against smallpox into account, this situation contributes to the increased incidence of CPXV infections in man, particularly in younger age groups, with more complicated courses of clinical infections
Nanoelectropulse-driven membrane perturbation and small molecule permeabilization
BACKGROUND: Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS) externalization. RESULTS: In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to unipolar pulses, which perturb membrane phospholipid order, tracked with FM1-43 fluorescence, only at the anode side of the cell, bipolar pulses redistribute phospholipids at both the anode and cathode poles, consistent with migration of the anionic PS head group in the transmembrane field. In addition, we demonstrate that, as predicted by the membrane charging hypothesis, a train of shorter pulses requires higher fields to produce phospholipid scrambling comparable to that produced by a time-equivalent train of longer pulses (for a given applied field, 30, 4 ns pulses produce a weaker response than 4, 30 ns pulses). Finally, we show that influx of YO-PRO-1, a fluorescent dye used to detect early apoptosis and activation of the purinergic P2X(7 )receptor channels, is observed after exposure of Jurkat T lymphoblasts to sufficiently large numbers of pulses, suggesting that membrane poration occurs even with nanosecond pulses when the electric field is high enough. Propidium iodide entry, a traditional indicator of electroporation, occurs with even higher pulse counts. CONCLUSION: Megavolt-per-meter electric pulses as short as 3 ns alter the structure of the plasma membrane and permeabilize the cell to small molecules. The dose responses of cells to unipolar and bipolar pulses ranging from 3 ns to 30 ns duration support the hypothesis that a field-driven charging of the membrane dielectric causes the formation of pores on a nanosecond time scale, and that the anionic phospholipid PS migrates electrophoretically along the wall of these pores to the external face of the membrane
Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis
Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens. ©2006 Nature Publishing Group.J.K., M. B. and R.K. thank G. Sawers and U. Kämper for critical reading of the manuscript. The genome sequencing of Ustilago maydis strain 521 is part of the fungal genome initiative and was funded by National Human Genome Research Institute (USA) and BayerCropScience AG (Germany). F.B. was supported by a grant from the National Institutes of Health (USA). J.K. and R.K. thank the German Ministry of Education and Science (BMBF) for financing the DNA array setup and the Max Planck Society for their support of the manual genome annotation. F.B. was supported by a grant from the National Institutes of Health, B.J.S. was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation, J.W.K. received funding from the Natural Sciences and Engineering Research Council of Canada, J.R.-H. received funding from CONACYT, México, A.M.-M. was supported by a fellowship from the Humboldt Foundation, and L.M. was supported by an EU grant. Author Contributions All authors were involved in planning and executing the genome sequencing project. B.W.B., J.G., L.-J.M., E.W.M., D.D., C.M.W., J.B., S.Y., D.B.J., S.C., C.N., E.K., G.F., P.H.S., I.H.-H., M. Vaupel, H.V., T.S., J.M., D.P., C.S., A.G., F.C. and V. Vysotskaia contributed to the three independent sequencing projects; M.M., G.M., U.G., D.H., M.O. and H.-W.M. were responsible for gene model refinement, database design and database maintenance; G.M., J. Kämper, R.K., G.S., M. Feldbrügge, J.S., C.W.B., U.F., M.B., B.S., B.J.S., M.J.C., E.C.H.H., S.M., F.B., J.W.K., K.J.B., J. Klose, S.E.G., S.J.K., M.H.P., H.A.B.W., R.deV., H.J.D., J.R.-H., C.G.R.-P., L.O.-C., M.McC., K.S., J.P.-M., J.I.I., W.H., P.G., P.S.-A., M. Farman, J.E.S., R.S., J.M.G.-P., J.C.K., W.L. and D.H. were involved in functional annotation and interpretation; T.B., O.M., L.M., A.M.-M., D.G., K.M., N.R., V. Vincon, M. VraneŠ, M.S. and O.L. performed experiments. J. Kämper, R.K. and M.B. wrote and edited the paper with input from L.-J.M., J.G., F.B., J.W.K., B.J.S. and S.E.G. Individual contributions of authors can be found as Supplementary Notes
- …