33 research outputs found

    The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition

    Get PDF
    Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines

    Predicting the onset and persistence of episodes of depression in primary health care. The predictD-Spain study: Methodology

    Get PDF
    Background: The effects of putative risk factors on the onset and/or persistence of depression remain unclear. We aim to develop comprehensive models to predict the onset and persistence of episodes of depression in primary care. Here we explain the general methodology of the predictD-Spain study and evaluate the reliability of the questionnaires used. Methods: This is a prospective cohort study. A systematic random sample of general practice attendees aged 18 to 75 has been recruited in seven Spanish provinces. Depression is being measured with the CIDI at baseline, and at 6, 12, 24 and 36 months. A set of individual, environmental, genetic, professional and organizational risk factors are to be assessed at each follow-up point. In a separate reliability study, a proportional random sample of 401 participants completed the test-retest (251 researcher-administered and 150 self-administered) between October 2005 and February 2006. We have also checked 118,398 items for data entry from a random sample of 480 patients stratified by province. Results: All items and questionnaires had good test-retest reliability for both methods of administration, except for the use of recreational drugs over the previous six months. Cronbach's alphas were good and their factorial analyses coherent for the three scales evaluated (social support from family and friends, dissatisfaction with paid work, and dissatisfaction with unpaid work). There were 191 (0.16%) data entry errors. Conclusion: The items and questionnaires were reliable and data quality control was excellent. When we eventually obtain our risk index for the onset and persistence of depression, we will be able to determine the individual risk of each patient evaluated in primary health care.The research in Spain was funded by grants from the Spanish Ministry of Health (grant FIS references: PI04/1980, PI0/41771, PI04/2450, and PI06/1442), Andalusian Council of Health (grant references: 05/403, 06/278 and 08/0194), and the Spanish Ministry of Education and Science (grant reference SAF 2006/07192). The Malaga sample, as part of the predictD-International study, was also funded by a grant from The European Commission (reference QL4-CT2002-00683)

    Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide

    Get PDF
    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.Fondo Especial de la Educación Superior/[0500-13]/FEES/Costa RicaFondo Especial de la Educación Superior/[0504-13]/FEES/Costa RicaFondo Especial de la Educación Superior/[0505-13]/FEES/Costa RicaFondo Especial de la Educación Superior/[0248-13]/FEES/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    Development of a Large Set of Microsatellite Markers in Zapote Mamey (Pouteria sapota (Jacq.) H.E. Moore & Stearn) and Their Potential Use in the Study of the Species

    No full text
    Pouteria sapota is known for its edible fruits that contain unique carotenoids, as well as for its fungitoxic, anti-inflammatory and anti-oxidant activity. However, its genetics is mostly unknown, including aspects about its genetic diversity and domestication process. We did high-throughput sequencing of microsatellite-enriched libraries of P. sapota, generated 5223 contig DNA sequences, 1.8 Mbp, developed 368 microsatellites markers and tested them on 29 individuals from 10 populations (seven wild, three cultivated) from Mexico, its putative domestication center. Gene ontology BLAST analysis of the DNA sequences containing microsatellites showed potential association to physiological functions. Genetic diversity was slightly higher in cultivated than in the wild gene pool (HE = 0.41 and HE = 0.35, respectively), although modified Garza–Williamson Index and Bottleneck software showed evidence for a reduction in genetic diversity for the cultivated one. Neighbor Joining, 3D Principal Coordinates Analysis and assignment tests grouped most individuals according to their geographic origin but no clear separation was observed between wild or cultivated gene pools due to, perhaps, the existence of several admixed populations. The developed microsatellites have a great potential in genetic population and domestication studies of P. sapota but additional sampling will be necessary to better understand how the domestication process has impacted the genetic diversity of this fruit crop
    corecore