17 research outputs found

    Estudio comparativo de diversos tipos de esencias de espliego españolas

    Get PDF
    Resumen de la tesis Doctoral realizada por M. MARTIN MESONERO Y dirigida por el Prof. Dr. J. CABO TORRES.Estimamos que en el estudio de las esencias naturales las más modernas técnicas cromatográficas en capa fina y fase gaseosa constituyen un magnifico complemento de las técnicas analíticas clásicas en este campo. Ello se aprecia con meridiana claridad en el presente estudio sobre esencias de espliego españolas, pues las conclusiones obtenidas mediante las técnicas aludidas no sólo se han complementado sino que ofrecen en conjunto gran coherencia. En efecto, se obtienen resultados comunes que ofrecen precisamente los puntos de partida en que se cimentan otras conclusiones especificas aportadas aisladamente por alguna de las técnicas empleadas. Por ejemplo está el caso presentado por la muestra de espliego procedente de Zaragoza, en que el dato analítico clásico de determinación de ésteres acusaba una diferencia tímidamente señalada en algún otro índice físico o químico; la cromatografía en capa fina y la cromatografía gaseosa subrayaron la aparente anomalía -más la primera que la segunda- corroborándose después que en efecto, dicha muestra contenía cierta cantidad de acetato de linalilo. La C. C. F., es particularmente útil en el aspecto cualitativo de los componentes de la esencia. Nos atrevemos a decir que en este aspecto es más aconsejable su empleo que la C. G., ya que a su rapidez une lo sencillo de su instrumental y el ser mucho más económica que ésta; en este aspecto cualitativo queremos puntualizar que la imagen final -el cromatograma- posee en la C. C. F., una fuerza plástica, pues en vez de picos más o menos agudos se estudian manchas de tamaño variable y de tonalidades diferentes para cada reactivo de revelado e incluso frente a uno mismo. La cromatografía gaseosa además de ratificarse mutuamente con la de capa fina en lo cualitativo, se muestra de gran utilidad especialmente en las consideraciones de tipo cuantitativo de los componentes detectados. El presente estudio sobre esencias españolas de espliego, referidas a las procedentes de las regiones de mayor producción, nos ha permitido afirmar que los tres componentes principales con diferencia notable sobre los demás son: linalol, eucaliptol y alcanfor, y entre los restantes se han identificado también el terpineol, acetato de terpenilo, canfeno, pineno, y 8 -pineno; en la únIca muestra procedente de Zaragoza existe además en cantidad apreciable acetato de linalilo. Al tomar en consideración el interesante aspecto de la posible influencie ecológica, pal"e1ce que, desde el punto de 'Vista cualitati'vo dicha influencia es nula como lo demuestra la homogeneidad de las imágenes cromatográficas. Sin embargo, hay que admitir una excepción positiva cual es la esencia de Zaragoza, con su acetato de linalilo que según dijimos no existe en las demás. Naturalmente, es preciso corroborar tal punto estudiando esencias de otras "campañas". Sin embargo, en lo cuantitativo dicha influencia ecológica se hace algo más patente: así, los tres componentes mayoritarios se sitúan en orden decreciente linalol>eucaliptol> alcanfor, 'excepto en las muestras de Soria en el que el orden es en este sentido: eucaliptol >linalol > alcanfor; por otra parte es variable el orden de los que llamamos componentes minoritarios

    Español

    Get PDF

    Relationship between IGF-1 and body weight in inflammatory bowel diseases: Cellular and molecular mechanisms involved

    Get PDF
    Inflammatory bowel diseases (IBD), represented by ulcerative colitis (UC) and Crohn''s disease (CD), are characterized by chronic inflammation of the gastrointestinal tract, what leads to diarrhea, malnutrition, and weight loss. Depression of the growth hormone-insulin-like growth factor-1 axis (GH-IGF-1 axis) could be responsible of these symptoms. We demonstrate that long-term treatment (54 weeks) of adult CD patients with adalimumab (ADA) results in a decrease in serum IGF-1 without changes in serum IGF-1 binding protein (IGF1BP4). These results prompted us to conduct a preclinical study to test the efficiency of IGF-1 in the medication for experimental colitis. IGF-1 treatment of rats with DSS-induced colitis has a beneficial effect on the following circulating biochemical parameters: glucose, albumin, and total protein levels. In this experimental group we also observed healthy maintenance of colon size, body weight, and lean mass in comparison with the DSS-only group. Histological analysis revealed restoration of the mucosal barrier with the IGF-1 treatment, which was characterized by healthy quantities of mucin production, structural maintenance of adherers junctions (AJs), recuperation of E-cadherin and ß-catenin levels and decrease in infiltrating immune cells and in metalloproteinase-2 levels. The experimentally induced colitis caused activation of apoptosis markers, including cleaved caspase 3, caspase 8, and PARP and decreases cell-cycle checkpoint activators including phosphorylated Rb, cyclin E, and E2F1. The IGF-1 treatment inhibited cyclin E depletion and partially protects PARP levels. The beneficial effects of IGF-1 in experimental colitis could be explained by a re-sensitization of the IGF-1/IRS-1/AKT cascade to exogenous IGF-1. Given these results, we postulate that IGF-1 treatment of IBD patients could prove to be successful in reducing disease pathology. © 2021 The Author

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Plan de cuidados estandarizados para pacientes con cirugía percutánea (nefrolitotomía): aplicación en el programa informático Gacela

    No full text
    In the University Hospital «Río Hortega» in Valladolid, since 1988 approximately 780 patients have been treated with percutaneous surgery. Surgery with percutaneous approach would be defined as the surgical act on the structure, in this case, renal and uretheral, which access tract to the organ is carried out through the skin, precisely a nephrostomy. In our Unit 77% of the cases of percutaneous surgery it is applied in the treatment of renal lithiasis-uretheral when other treatments fail or are not feasible, for example unsuccessful lithotripsy, ureteral calculus of difficult approach, coralliform kidney calculis, etc. It is also applied in tumoral treatments, endopyelotomy, etc. A priori this surgery is of preferential choice because it is minimally invasive. On the other hand, the introduction of the GAZELLE computer program allows standardizing the Nursing Cares , what facilitates the creation of a specific cares plan for this type of patients, since the diagnoses and care actions described are common in a high percentage of cases treated (close to 100%). The taxonomy used in the description of nursing diagnoses corresponds to the classification NANDA and the actions are found in the database of the GAZELLE program.La aparición de nuevas tecnologías trae añadida nuevas formas de abordaje quirúrgico. En el Hospital Universitario «Río Hortega» de Valladolid, desde el año 1988 se han tratado aproximadamente 780 pacientes con cirugía percutánea. Cirugía con abordaje percutáneo se definiría como el acto quirúrgico sobre la estructura, en este caso, renal y ureteral cuya vía de acceso o de entrada al órgano se efectúa a través de la piel, concretamente una nefrostomía. En nuestra Unidad, un 77% de los casos de cirugía percutánea es aplicada en el tratamiento de litiasis renales-ureterales cuando otros tratamientos fallan o no son factibles, por ejemplo litotricias fallidas, cálculos ureterales de mal abordaje, cálculos renales coraliformes, etc.También se aplica en tratamientos tumorales, endopielotomías, etc. A priori esta cirugía es de elección preferente por ser mínimamente invasiva. Por otra parte, la implantación del programa informático GACELA permite estandarizar los cuidados enfermeros, lo que facilita la creación de un plan de cuidados específico para este tipo de pacientes, ya que los diagnósticos y acciones cuidadoras descritas son comunes en un alto porcentaje de casos tratados (próximo al 100%). La taxonomía empleada en la descripción de diagnósticos enfermeros corresponde a la clasificación NANDA y las acciones se encuentran en la base de datos del programa GACELA

    Trends in Targeted Therapy Usage in Inflammatory Bowel Disease : TRENDY Study of ENEIDA

    Get PDF
    Markers that allow for the selection of tailored treatments for individual patients with inflammatory bowel diseases (IBD) are yet to be identified. Our aim was to describe trends in real-life treatment usage. For this purpose, patients from the ENEIDA registry who received their first targeted IBD treatment (biologics or tofacitinib) between 2015 and 2021 were included. A subsequent analysis with Machine Learning models was performed. The study included 10,009 patients [71% with Crohn's disease (CD) and 29% with ulcerative colitis (UC)]. In CD, anti-TNF (predominantly adalimumab) were the main agents in the 1st line of treatment (LoT), although their use declined over time. In UC, anti-TNF (mainly infliximab) use was predominant in 1st LoT, remaining stable over time. Ustekinumab and vedolizumab were the most prescribed drugs in 2nd and 3rd LoT in CD and UC, respectively. Overall, the use of biosimilars increased over time. Machine Learning failed to identify a model capable of predicting treatment patterns. In conclusion, drug positioning is different in CD and UC. Anti-TNF were the most used drugs in IBD 1st LoT, being adalimumab predominant in CD and infliximab in UC. Ustekinumab and vedolizumab have gained importance in CD and UC, respectively. The approval of biosimilars had a significant impact on treatment

    Evaluation of AIF-1 (Allograft Inflammatory Factor-1) as a Biomarker of Crohn’s Disease Severity

    No full text
    Background: Recently, increased tissue levels of AIF-1 have been shown in experimental colitis, supporting its role in intestinal inflammation. Therefore, we studied the levels of AIF-1 in Crohn’s disease (CD). Methods: This study included 33 patients with CD (14 men and 19 women) who participated in the PREDICROHN project, a prospective multicenter study of the Spanish Group of Inflammatory bowel disease (GETECCU). Results: This article demonstrates declines with respect to baseline levels of serum AIF-1 in Crohn’s disease (CD) patients after 14 weeks of treatment with anti-TNFs. Furthermore, in patients with active CD (HB ≥ 5), serum AIF-1 levels were significantly higher than those in patients without activity (HB ≤ 4). The study of serum AIF-1 in the same cohort, revealed an area under the ROC curve (AUC) value of AUC = 0.66 (p = 0.014), while for the CRP (C-reactive protein), (AUC) value of 0.69 (p = 0.0066), indicating a similar ability to classify CD patients by their severity. However, the combination of data on serum levels of AIF-1 and CRP improves the predictive ability of these analyses for classifying CD patients as active (HB ≥ 5) or inactive (HB ≤ 4). When we used the odds ratio (OR) formula, we observed that patients with CRP > 5 mg/L or AIF-1 > 200 pg/mL or both conditions were 13 times more likely to show HB ≥ 5 (active CD) than were those with both markers below these thresholds. Conclusion: The development of an algorithm that includes serum levels of AIF-1 and CRP could be useful for assessing Crohn’s disease severity

    Functional rare variants influence the clinical response to anti-TNF therapy in Crohn's disease

    Get PDF
    Background: The effect of low-frequency functional variation on anti-tumor necrosis factor alpha (TNF) response in Crohn's disease (CD) patients remains unexplored. The objective of this study was to investigate the impact of functional rare variants in clinical response to anti-TNF therapy in CD. Methods: CD anti-TNF naïve patients starting anti-TNF treatment due to active disease [Crohn's Disease Activity Index (CDAI > 150)] were included. The whole genome was sequenced using the Illumina Hiseq4000 platform. Clinical response was defined as a CDAI score <150 at week 14 of anti-TNF treatment. Low-frequency variants were annotated and classified according to their damaging potential. The whole genome of CD patients was screened to identify homozygous loss-of-function (LoF) variants. The TNF signaling pathway was tested for overabundance of damaging variants using the SKAT-O method. Functional implication of the associated rare variation was evaluated using cell-type epigenetic enrichment analyses. Results: A total of 41 consecutive CD patients were included; 3250 functional rare variants were identified (2682 damaging and 568 LoF variants). Two homozygous LoF mutations were found in HLA-B and HLA-DRB1 genes associated with lack of response and remission, respectively. Genome-wide LoF variants were enriched in epigenetic marks specific for the gastrointestinal tissue (colon, p = 4.11e-4; duodenum, p = 0.011). The burden of damaging variation in the TNF signaling pathway was associated with response to anti-TNF therapy (p = 0.016); damaging variants were enriched in epigenetic marks from CD8+ (p = 6.01e-4) and CD4+ (p = 0.032) T cells. Conclusions: Functional rare variants are involved in the response to anti-TNF therapy in CD. Cell-type enrichment analysis suggests that the gut mucosa and CD8+ T cells are the main mediators of this response
    corecore