3,443 research outputs found
INVESTIGATING CATALYST DESIGN STRATEGIES FOR SELECTIVE REACTION OF CYCLIC C4 OXYGENATES FROM BIOMASS
Numerous studies have shown that the properties of metal catalysts can in principle be fine-tuned by controlling the composition of the metal surface with high precision. The ability to design catalysts capable of high selectivity towards the conversion of a single functional group in a multifunctional molecule is a major objective for heterogeneous catalysis research. This need for high selectivity toward a single functional group is of growing importance in efforts to improve biorefining operations, where biomass-derived multifunctional carbohydrates are key building block intermediates that must be converted to a vast range of commodity chemical products such as fuels, pharmaceuticals, food products, and more. This work focuses on results from high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD) experiments combined with selective use of density functional theory (DFT) calculations on single-crystal surfaces under ultrahigh vacuum conditions to study structure-property relations for a series of C4 cyclic oxygenates on catalytic metal surfaces. The objective of this work is to identify methods to tailor surfaces that are able to selectively catalyze conversions of one functional group in the multifunctional molecule.
Two types of cyclic probe molecules have been studied in particular: 3-membered epoxide rings (in which ring-strain is high and the character of the oxygenate function is therefore more reactive) and 5-membered furanone rings (in which the ring is relatively stable). Both the epoxides and furanones contain an unsaturated C=C bond; for many biorefining applications it is desirable to selectively hydrogenate the olefin while keeping the oxygenate functionality intact. In this contribution, we explore the role of surface structure and composition in dictating the reaction pathways for multifunctional C4 cyclic oxygenates on key transition metal and bimetallic surfaces.
Results for the epoxide probe molecule studies indicate differing modes of interaction with different metal surfaces. On a platinum or palladium surface, the epoxide ring opens irreversibly while the C=C functional group has a strong interaction with the surface. However, on a silver surface, the epoxide ring also opens, but can be made to close reversibly. An effective catalyst design strategy, then, is to combine silver on a predominantly platinum or palladium surface in order to create a bimetallic catalyst with high selectivity toward reaction of the olefin while keeping the epoxide ring intact. Recent studies of the chemistry of furanone species indicate that the olefin group interacts strongly with a platinum or palladium metal surface, and therefore is very likely to also determine how the molecule reacts. In this presentation, relationships between catalyst design strategies for epoxides versus furanones will be discussed, as will the likely biorefining reactions that such strategies can impact
Upper Ordovician Strata of Southern Ohio-Indiana: Shales, Shell Beds, Storms, Sediment Starvation, and Cycles
The Cincinnatian Series (ca. 450 to 442 Ma) of the Cincinnati Arch features some of the most spectacular Ordovician fossils in the world. The rich faunas of bryozoans, brachiopods, molluscs, echinoderms, and trilobites are preserved as discrete shell-rich limestones, cyclically interbedded with sparsely fossiliferous shales and mudstones that may yield exceptionally preserved trilobites and crinoids. Similar successions of shell beds interbedded with mudstones are common components of Paleozoic successions. In such successions, the genesis of the highly concentrated shell beds is often attributed to storm-winnowing, but is this the whole story? This trip will offer an overview of the classic Cincinnatian Series, with ample opportunity for examining and collecting the rich fossil assemblages throughout much of the succession. Discussions will focus on the origin of interbedded mudstone-limestone cycles. We will emphasize depositional processes, particularly the role of intermittent siliciclastic sediment supply, carbonate (shell) production, and winnowing by storms and other high-energy events in a critical discussion of the storm-winnowing model
Searching the web builds fuller picture of arachnid trade
Trade in arachnids includes millions of individuals and over 1264 species, with over 70% of individuals coming from the wild. Wildlife trade is a major driver of biodiversity loss, yet whilst the impacts of trade in some species are relatively well-known, some taxa, such as many invertebrates are often overlooked. Here we explore global patterns of trade in the arachnids, and detected 1,264 species from 66 families and 371 genera in trade. Trade in these groups exceeds millions of individuals, with 67% coming directly from the wild, and up to 99% of individuals in some genera. For popular taxa, such as tarantulas up to 50% are in trade, including 25% of species described since 2000. CITES only covers 30 (2%) of the species potentially traded. We mapped the percentage and number of species native to each country in trade. To enable sustainable trade, better data on species distributions and better conservation status assessments are needed. The disparity between trade data sources highlights the need to expand monitoring if impacts on wild populations are to be accurately gauged and the impacts of trade minimised.Peer reviewe
Clinical Outcomes for Cystinuria Patients with Unilateral Versus Bilateral Cystine Stone Disease.
INTRODUCTION:Cystinuria is a genetic disorder marked by elevated urinary cystine excretion and recurrent cystine nephrolithiasis. Interestingly, despite seemingly similar contralateral renal anatomy, a subset of cystinuric patients consistently form stones in only one kidney. The aim of this study is to evaluate clinical outcomes in unilateral vs bilateral cystine stone formers. PATIENTS AND METHODS:We performed a retrospective case-control study of cystinuric patients evaluated and treated at the University of California, San Francisco between 1994 and 2015 and categorized patients as either unilateral or bilateral stone formers. Clinical presentation, baseline patient demographics, stone procedures, medical therapy regimens, and long-term renal function were compared between the two groups. RESULTS:A total of 42 cystine stone patients (22 female, 20 male) were included in the analysis. The median age at first presentation was 18.5 years and median age at study conclusion was 45.5 years. Two-thirds of patients (n = 28) had a history of bilateral stones, whereas one-third (n = 14) had unilateral stones. Medical therapy regimens were similar between groups. Despite an increased average number of lifetime surgeries (7.5 sessions for bilateral vs 3.7 sessions for unilateral, p < 0.05), there was no significant difference in medians of the most recent glomerular filtration rate when compared with unilateral stone formers (81.5 vs 95 mL/min, respectively; p = 0.28). CONCLUSIONS:The majority of cystinuric patients within our cohort form stones bilaterally during their lifetime, and require more surgical interventions than unilateral stone formers. Despite this, overall renal function is well preserved in unilateral and bilateral cystinuric stone formers treated with minimally invasive stone extraction procedures
The Doppler Wind Temperature Sensor (DWTS) Flight Evaluation and Experiments (TES-16,17)
The Doppler Wind and Temperature Sounder instrument (DWTS) developed by Global Atmospheric Technologies and Sciences (GATS) is a simple yet powerful tool with the potential to become a new window through which the study of upper atmosphere dynamics can occur. Based around a defense-grade infrared camera peering through a static gas cell used as a scanning spectral filter, a DWTS instrument can infer wind velocities and kinetic temperatures throughout the stratosphere and lower thermosphere. The DWTS achieves this scanning by measuring the induced Doppler shift and Doppler broadening of emissions as they pass through the DWTS field of view (Gordley, Marshall, 2011). The DWTS holds promise in improving accuracy in weather determination among other terrestrial benefits, and the core technology can be easily adapted to study the dynamics of other planetary atmospheres.
In partnership with GATS, NOAA, and other collaborators, NASA Ames and the Nano-Orbital Workshop (NOW) group have been working to evaluate the DWTS instrument on orbit and optimize it as a flexible payload for nanosatellites. The first mission selected for DWTS technical evaluation is preparing for flight in early 2024, which will be followed by a more capable science mission in 2025, with both missions being part of the TES-n/NOW heritage flight series. The first rapid technology demonstration flight, TES-16/DWTS-A, will demonstrate a single DWTS instrument in an approximately 2U payload volume. With an estimated power consumption of 50 watts, the instrument will maintain the imaging sensor plane at 80K during instrument performance evaluation periods using an integrated Stirling cryocooler. Data from DWTS will be captured and processed via a NOW-designed custom data interface unit before being transmitted via S-band radio back to select ground stations, with instrument command and control maintained via L-band global-coverage radio. The subsequent TES-17/DWTS-B mission will be a dedicated science mission tasked with validating the instrument’s full altitude coverage capabilities, currently estimated from 20 to 200 km during both day and night. This new atmospheric observational capability will come from a single small satellite equipped with three DWTS imagers, each hosting a different gas cell chemistry, to form a complete instrument.
The intention of this flight series, and one of NASA’s interests in this instrument, is not only to advance Earth atmospheric dynamics, but to advance a Martian atmospheric study instrument as well (Colaprete, Gordley, et al) which, if successful, would greatly further understanding of Martian atmospheric dynamics. This document describes the flight series in detail, including challenges facing the TES-16 flight tests and the projected challenges and application of Mars study. Additional detail regarding the possible applications of a Cognitive Communication technique in current flight development by NOW collaborators at the NASA Glenn Research Center is also discussed, including the implications of using an automated User Initiated Service (UIS) protocol to maximize the data collected per orbit
Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters
The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra
We announce the discovery of a highly inflated transiting hot Jupiter
discovered by the KELT-North survey. A global analysis including constraints
from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly
evolved, G dwarf with K, , , an inferred mass
M, and radius
R. The planetary companion has mass , radius
, surface gravity , and density
g cm. The planet is on a roughly
circular orbit with semimajor axis AU and
eccentricity . The best-fit linear ephemeris is
BJD and
days. This planet is one of the most inflated of all known transiting
exoplanets, making it one of the few members of a class of extremely low
density, highly-irradiated gas giants. The low stellar and large
implied radius are supported by stellar density constraints from follow-up
light curves, plus an evolutionary and space motion analysis. We also develop a
new technique to extract high precision radial velocities from noisy spectra
that reduces the observing time needed to confirm transiting planet candidates.
This planet boasts deep transits of a bright star, a large inferred atmospheric
scale height, and a high equilibrium temperature of
K, assuming zero albedo and perfect heat redistribution, making it one of the
best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom
Disk-Jet Connection in the Radio Galaxy 3C 120
We present the results of extensive multi-frequency monitoring of the radio
galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as
well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of
observation, significant dips in the X-ray light curve are followed by
ejections of bright superluminal knots in the VLBA images. Consistent with
this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the
radio variations. This implies that, in this radio galaxy, the radiative state
of accretion disk plus corona system, where the X-rays are produced, has a
direct effect on the events in the jet, where the radio emission originates.
The X-ray power spectral density of 3C 120 shows a break, with steeper slope at
shorter timescale and the break timescale is commensurate with the mass of the
central black hole based on observations of Seyfert galaxies and black hole
X-ray binaries. These findings provide support for the paradigm that black hole
X-ray binaries and active galactic nuclei are fundamentally similar systems,
with characteristic time and size scales linearly proportional to the mass of
the central black hole. The X-ray and optical variations are strongly
correlated in 3C 120, which implies that the optical emission in this object
arises from the same general region as the X-rays, i.e., in the accretion
disk-corona system. We numerically model multi-wavelength light curves of 3C
120 from such a system with the optical-UV emission produced in the disk and
the X-rays generated by scattering of thermal photons by hot electrons in the
corona. From the comparison of the temporal properties of the model light
curves to that of the observed variability, we constrain the physical size of
the corona and the distances of the emitting regions from the central BH.Comment: Accepted for publication in the Astrophysical Journal. 28 pages, 21
figures, 2 table
- …