

National Aeronautics and Space Administration

The Doppler Wind Temperature Sensor (DWTS) Flight Evaluation and Experiments (TES-16, 17)

Small Satellite Conference 06 August 2023

> M. Murbach, A. Dave, A. Salas, A. Kashani, M. Mooney-Rivkin, S. Zuniga, K. Boateng, S. Krzesniak, J. Alvarellos, T. Hector, A. Brock, S. Schisler, T. Stone, L. Gordley TechEdSat / GATS Team

Logo: Stanley Krześniak

- 1. Introduction to TechEdSat Lab / Nano-Orbital Workshop (NOW)
- 2. Doppler Wind and Temperature Sounder (DWTS) description
 - 1. Science applications
 - 2. Challenges
- 3. Survey of comparable cryocooled nanosatellite experiments
- 4. TES / DWTS Mission Design (Aeolus-Earth)
 - 1. Instrument Pointing/Thermal Requirements
 - 2. Orbit Selection/Thermal Model
 - 3. Resulting Topology
- 5. Summary

TechEdSat-N / Nano-Orbital Workshop (NOW)

Who we are:

- Innovative flight project focused on rapid design & innovation
 - 2-3 flights a year, low cost, ISS standards
 - LEO, Lunar, & Mars exploration proposals
 - Payload pathfinder(s) for new space launch providers (ISS, VO, Firefly)
 - 100% In-house development, over 90% experiment success rate
 - Rapid development group for technology and people

Key Innovations:

Communication

- Iridium SBD for quick command and control
- Custom 'Lunar' and 'Mars' S-Band SDR radios
- Satellite-internal mesh Wi-Fi network

Exo-Brake

- Precision deorbit and reentry
- Space debris mitigation via EoM disposal
- AI/ML Testbed (BrainStack)
 - Neuromorphic processing, cognitive communication, and health monitoring

Support:

Ames Research Center Glenn Research Center Goddard Space Flight Center Air Force Research Laboratory NASA STMD NASA SST Program NASA CSLI Program

University Partners: San Jose State University University of Minnesota

University of Idaho

Aeolus-EARTH / Aeolus-MARS DWTS Instrument Development Cycle

spaceflight

custom integration hardware for

(Image: TES-n)

640x512px 12b 120Hz, 80K, SWIR Imager (Image: AIM)

AIM Infrarot-Module GmbH 'Cryocooled Short-Wave Infrared Camera (SWIR), ESA flight heritage

ADD gas cells for DSGF (Doppler Scanning with Gas Filter)

- GATS NO-gas filter and mechanical assembly
 - DWTS-A with single aperture/filter (NO
 - DWTS-B with triple aperture/filter (add N2O, NO2)
- Non-standard bandpass filter swap on sensor (AIM)

Gas Filter Swap

Aeolus DWTS for Mars Use of O3/regenerative gas cell

*L. Gordley/GATS is the DWTS innovator

GATS Thermal & Mechanical Isolation Frame with Gas 'lens' Assembly DWTS-A: IMPROVED FLIGHT INTERFACE (Image: GATS)

Improved Resolution(Image: GATS)

Slide: Murbach/Brock

DWTS Instrument Capabilities

Doppler modulated gas correlation approach is used to measure:

- Cross-Track(CT) Winds 200km spatial resolution
- Along-Track(AT) Winds 10km spatial resolution
- Kinetic Temperature

Altitude Coverage:

- Technology Demonstration Mission: 25-50km & 85-250km
- 3x Aperture Mission: 25-250km
 - 1x NO
 - 1x N₂0
 - 1x ¹³CO₂

No time-of-day imaging dependency.

2km Vertical Resolution 350 KEY 300 Wind Temperature 250 Altitude (km) Day only 200 150 100 50 0 DWTS OSIRIS MLS MIGHT WIND TIDI NIR UARS UARS TIMED RAIDS ODIN AURA ICON

Comparison of DWTS measurement range with other weather observation platforms.

The DWTS measurement technique will allow improved atmospheric measurement for weather prediction/ fine structure / climate change effects.

Cloud formations caused by gravity waves

Comparable Cryocooled Nano-Sat Missions

Mission	TechEdSat-16	НуТі	Lunar IceCube	ARCSTONE
Spacecraft Size	12U	6U	6U	6U
Spacecraft Mass	15kg		14kg	
ILC Date	January 2024	December 2023	November 2022	Spring 2025
Orbit	550km, Sun Sync	400km, 51° inc.	100x5000km, 90° Lunar	550km, Sun Sync
Bus Power	80W	40W	120W	-
Instrument	DWTS	НуТі	BIRCHES	ARCSTONE
Instrument Volume	4U	3.5U	2.5U	4U
Instrument Type	IR Radiometer	IR Hyperspectral Interferometer	Miniaturized IR Spectrometer	Hyperspectral Spectrometer for Lunar Measurements
Cryocooler Type	AIM SF070	AIM SF070	AIM SX030	AIM SF070
Cryocooler Controller	AIM DCE100	Creare MCCE-TS	IRIS Technology LCCE	AIM DCE100
Nominal Required Power	38W	45W	40W	27W Cooldown 10.58W Measurement
Thermal Control Method	Passive Radiators	Heat Sink – Graphite Flex Straps		Passive heat rejection to the spacecraft body
Maximum Heat Rejection	40° C	40° C	55° C	71° C
Temperature	40 C			
Instrument Cooling Requirement	<80K FPA	<68K FPA	<115K Detector/FPA	<140K FPA

Table 1: Comparison of relevant nanosatellite missions containing cryocooled instruments

TES-16/17 missions will test critical supporting subsystems (power, command and control, data-handling) as well as DWTS instrument functionality on-orbit.

- Instrument requires orbital velocities to verify Doppler Modulated Gas Correlation (DMGC) technique

Technology demonstration mission is designed to de-couple instrument/subsystem calibration and testing from the high continuous power and large data throughput requirements of a dedicated science mission.

> e.g. deployable solar arrays avoided; operations simplified in favor of opportunistic downlinking of smaller data product.

- Rapid, low-cost increment in flight series

Table 2: Objectives for DWTS technology demonstration and mature science missions

Mission Objectives	Technology Demonstration Mission	Full Science Mission
Gather continuous IR	Two minutes of	One orbit period
frames with Earth	continuous data	of continuous
limb in 20° FOV		data
Synthesize resultant	Data reduction to	Data reduction
data to retrieve wind	a single downlink	from all
and temperature data		acquired data
Validate/Calibrate	Data acquisition	Data from
resulting wind and	between 20-50	multiple science
temperature	km and 85-250 km	regions between
measurements with		17-200km with
independent source		multiple gas
e.g., Course		filters (NO, N2O,
measurements from		NO2)
existing satellite or		
sounding rocket direct		
measurement		

DWTS payload interface with TES-n bus architecture

- TES-n Core Stack
 - 150-300W-hr capacity
 - L-band cmd/control
 - S-band downlink
 - UIS/GRC
 - **DWTS Interface Stack**
 - Data/image processing
 - 5/28V power
 - Data transfer

DWTS Instrument

- 40-50W during operation
- Various cmd/control modes
- T-control systems

Pointing Requirements & Constraints

DWTS Instrument

- <1° Pointing Error, <1 arcmin pointing knowledge
- Imaging mode: Orthogonal to flight velocity vector

ADCS

- Startracker required to attain <1 arcmin pointing knowledge
 - Must maintain well-exposed view of star field

Thermal Management

Passive lens cooling radiator: Maintain view of dark sky

High inclination, terminator orbits accommodate these constraints well.

Tech. Demonstration Topology

- DWTS occupies ~2U of volume
 - Technology demonstration for intermittent imaging (minimal power) appears feasible in both 6U and 12U form factors.
- Scalable battery capacity (>W-hr) eliminates need for deployable solar arrays, minimizing complexity.
- Cryocooler compressor located at center of mass to minimize attitude perturbations.
- Deployable exo-brake drag device for end-of mission disposal

6U-xl Side View

12U Side View

Thermal Considerations

Instrument Requirements

- Focal Plane Array cooling achieved with forementioned SF070 Cryocooler.
- Optics require stable cooling to <200K
 - <u>Tech Demo to employ passive, radiative</u> <u>cooling to maintain lens temperature</u>
 - Requires 2Ux3U body-mounted radiator
 - Steady-state illumination and operational limb-pointing compliment the use of passive radiator.

Table 3: DWTS thermal characteristics

Trait	Attribute
IDCA Cold End Operating	80K
Temperature	
Gas Cell Lens Operating	150-200K, stable over measurement
Temperature	duration
IDCA Hot End Max.	313K
Temperature	
IDCA Transient (Cool Down)	37.7W ⁺
Heat Dissipation	
IDCA Steady State Heat	16.2W
Dissipation	
Gas Cell Lens Assembly Heat	<1W
Dissipation	

Thermal Considerations

Orbit and attitude configuration for thermal analysis. 557 km Dusk SSO shown with instrument rolled 25° towards the limb. Lens radiator shown in turquoise.

Summary

TES-n/NOW is developing payloads advancing various pertinent nano-sat subsystems. This include:

Advanced COM, AI/ML (BrainStack), innovative power systems (150-300W-hr),

cryocooler/optic systems, de-orbit devices (Exo-brake)

- 2. The use of a tactical cryocooler combined with an IR imager enables a variety of science missions in the nano-sat (6-12U) format
- 3. The DWTS may be an important future atmospheric sensor Improved sensitivity in the temperature, wind velocity profile from 25-250km
- 4. Aeolus-Earth/ TES16-17 will be the initial flight tests for validation/evolution
- 5. Aeolus-Mars mission using a different gas cell combination (O3, CO/CO2) will also enable greatly improved Martian wind/atmospheric predictions (GCMs).