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The goal of this project is to design 

catalysts that are highly selective for 

reactions of multifunctional molecules

R1-C-R2-C-R3

BA

R1-C-R2-C-R3

CA

� Applications throughout heterogeneous 
catalysis and huge potential in biorefining

BA



Catalyst selectivity might be improved by 

using a bimetallic catalyst

� Degree of interaction between each 
functional group and the catalyst surface will 
determine reactivity



Must first develop molecular-level 

understanding of surface-adsorbate 

interactions on individual metals

??
R1-C-R2-C-R3

BA



This work focuses on surface studies of 

cyclic multifunctional probe molecules
� Multifunctional species:

� 3-membered ring
� 1-Epoxy-3-butene (EpB)
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� 5-membered rings
� 2(5H)-Furanone (25HF)
� γ-butyrolactone (GBL)
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� Contain four carbons, multifunctional oxygenates
� Useful model molecules for complex biorefining “building 

blocks”

“Furanone”
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Methods for studies on single 
crystals
• High Resolution Electron Energy  Loss 
Spectroscopy (HREELS)

• Temperature Programmed Desorption 
(TPD)

• Density functional theory (DFT)

Surface science approaches used to 

develop molecular-level understanding

? ?

? ?
• Density functional theory (DFT)
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Use EpB to refine strategy for designing 

a selective catalyst
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EpB = 3,4 epoxy-1-butene  n-butanal = n-butyraldehyde 
crotonaldehyde = 2-buten-1-al  n-BuOH = n-butanol 
crotyl alcohol = 2-buten-1-ol  BO = butylene oxide (epoxybutane) 
3-Bu-1-ol = 3-buten-1-ol 
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At low temperatures, EpB on Pt(111) 

adsorbs through olefin function
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EpB undergoes irreversible ring-opening to 

form an aldehyde on Pt(111) by 230 K
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Epoxide ring opens
Di-sigma bonded



EpB / Pt(111) TPD: EpB decomposes by 

decarbonylation and dehydrogenation

O

1

2

3

4

EpB

Pt(111)

Loh, Davis, Medlin, JACS 130 (2008) 5507

O

Pt(111)

C
=O

H2
H2

Pt(111)



� On Pt(111) ( or Pd(111) ):
� Binds primarily through C=C
� Ring opens irreversibly
� Undergoes decarbonylation and dehydrogenation

On Ag(110) - (previous work):

To summarize EpB results:
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� On Ag(110) - (previous work):
� Forms oxametallacycle intermediate
� Ring opens reversibly
� Can desorb as molecular EpB

Ag(110)
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Medlin, Barteau, Vohs, J. Molec. Cat. A: Chem 163 (2000) 129
Loh, Davis, Medlin, JACS 130 (2008) 5507

PtPt



Selectivity to various products is a 

sensitive function of surface composition

� Supported 
bimetallic catalyst 
(Ag-Pt/SiO2) 
improves 
selectivity

EpB

O

O
BO (epoxybutane)

Schaal et al, J Catalysis 254 (2008) 131; Schaal et al, Catalysis Today 123 (2007) 142
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Now progress to more complicated 

probe molecule

Succinic anhydride

OH
Hydroxymethylfurfural

Angelica lactone
OH

Hydroxybutyrolactone

γ-butyrolactone
Succinic anhydride

2,5-dimethylfuranEpoxy-lactone

Furfural2(5H)-furanone

Aryl-substituted 25HF

� Start by studying the probe molecules on 
Pd(111) and Pt(111)
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25HF reacts differently on Pt and Pd

25HFCH3
bendC-C 

stretch

Surface 
C=O

25HF ring opens and reactions 
proceed through unique 
intermediates C-H bendC-C 

modes
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25HF TPD results show decarbonylation 

and dehydrogenation
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Reaction schemes for 25HF

� 25HF proceeds through distinct 
intermediates on Pd(111) and Pt(111)
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TPD results for GBL show 

decarbonylation and dehydrogenation
GBL on Pd

� Unlike 25HF, CO2 is 

GBL

Pd(111)
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� Unlike 25HF, CO2 is 
produced from both 
Pt and PdPt(111)
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Shift indicates 
decarbonylation to surface-
bound CO

Different intermediate 
than 25HF
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� Ring-opening reaction occurs at lower 
temperature for GBL



Conclusion slide

� Surface science approaches facilitate an 
understanding of trends in adsorption and 
reaction of unsaturated cyclic oxygenates
� Adsorption on Pd and Pt dominated by adsorption 

through olefinthrough olefin
� Activated ring-opening reactions dependent on 

structure of the ring

� Combining observations from different 
surfaces allows design of catalysts for 
selective oxygenate conversions
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Results of surface science studies
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Might feel more comfortable just showing 
the general case for Pd OR Pt, where it 
adsorbs through olefin, goes to C3Hy-CHO, 
then decomposes, without specifying di-
sigma bound or not…



DFT helps in assigning vibrational modes, 

suggests furanone adsorbed in tilted 

configuration through olefin
In

te
ns

ity
, a

rb
.

C1

C2 C3

C4

C
=O

 s
tr

et
ch

δδ δδ o
op

(C
-H

)

300025002000150010005000

Energy loss, cm
-1

In
te

ns
ity

, a
rb

.

C
-H

 s
tr

et
ch



In
te

ns
ity

, 
a.

u.

250K

O

Adsorption and reaction of EpB on 

Pd(111)

C1=O aldehyde

C1-H aldehyde

Epoxide ring 
deformation

O

EpB adsorbs 
through olefin group

O
EpB

In
te

ns
ity

, 
a.

u.

3500300025002000150010005000

Energy loss, cm-1

140K

190K

0.25L

O

Pd(111)

Epoxide ring opens

CH2 twisting/rocking

O

C3Hy

CH2 scissoring

Perhaps better to put in EpB/Pt b/c the di-
sigma thing is more clear?
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TPD results for EpB on Pd(111) indicate 

decarbonylation and dehydrogenation reactions

� CO and H2 are 
major products

� Small amounts of 
propylene (m/e=41)
NO EpB re -forms
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Summary of “design” cues for EpB 

and 25HF

�Low temperature adsorption on Pt 
and Pd occurs (primarily) through 
olefin function, suggesting potential 
for selective C=C hydrogenation.

� Irreversible ring-opening occurs by 
200 K for EpB and by 300 K for 
25HF on Pd and Pt.

�Ring-opening of epoxides on Ag 
surfaces has been observed to be 



At low temperature, 25HF on Pt111 

adsorbs through olefin functionality
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This cartoon could be improved – C=O 
closer to parallel
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HREEL spectra show clear differences between ring-

opened EpB on Pt vs. Pd (111)

Aldehyde formation and 
decarbonylation clearly 
observed on both 
surfaces….
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… but intermediate on  
Pd(111) is likely to be more 
dehydrogenated

Loh, Davis, Medlin, JACS (2008)



TPD results for EpB on Pd(111)

� H2 desorption becomes 
more activated at 
higher coverage 
(harder for C-H (harder for C-H 
scission to occur as 
surface gets more 
crowded)
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Virtually identical on Pd(111). Similar but not identical on Pt(111).



25HF multilayers on Pd and Pt
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How HREELS works



Selection Rules
� Long-range dipole scattering and short-range 

impact scattering
� Dipole scattering:

� ~3 nm
� Electric field of moving electron interacts with 

scatterer; electron acts as a wavescatterer; electron acts as a wave
� Electrons are reflected specularly

� Impact scattering:
� ~0.2 nm
� Electron exchanges momentum with scatterer; 

electron acts as a particle
� Electrons are reflected diffusely
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EpB on Pd(111) adsorbs through olefin 

functional group

C-H and CH2 modes
Ring deformations

C-H and CH2 stretching

CH2 scissoring
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� HREELS indicates 
EpB is bound 
preferentially through 
olefin group 

Why don’t I see a C=C at high 
coverage?  And why is there a 
C=O stretch?

In
cr

ea
si

ng
 d

os
e



Illustration of HREELS vibrational modes 

and multilayer formation
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