98 research outputs found

    Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Get PDF
    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering

    Health-related quality of life after vertebral or hip fracture: a seven-year follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The negative impact of vertebral and hip low-energy fractures on health-related quality-of-life (HRQOL) has been demonstrated previously, but few prospective long-term follow-up studies have been conducted. This study aims to (i) investigate the changes and long-term impact of vertebral or hip fracture and between fracture groups on HRQOL in postmenopausal women prospectively between two and seven years after the inclusion fracture, (ii) compare HRQOL results between fracture and reference groups and (iii) study the relationship between HRQOL and physical performance, spinal deformity index and bone mineral density at seven-year follow-up.</p> <p>Methods</p> <p>Ninety-one women examined two years after a low-energy vertebral or hip fracture were invited to a new examination seven years after the diagnosis. HRQOL was examined using the SF-36 questionnaire and was compared with an age and sex-matched reference group. Physical function was assessed using tests and questionnaires. Bone mineral density was measured. Radiographs of the spine were evaluated using the visual semiquantitative technique. A longitudinal and cross-sectional design was used in this study. Statistical analyses included descriptive statistics, Student's <it>t</it>-tests, ANCOVA, and partial correlation.</p> <p>Results</p> <p>Sixty-seven women participated. In the 42 women (mean age 75.8, SD 4.7) with vertebral fracture as inclusion fracture, bodily pain had deteriorated between two and seven years and might be explained by new fracture. Remaining pronounced reduction of HRQOL was seen in all domains except general health and mental health at seven-year follow-up in women with vertebral fractures compared to the reference group (p < 0.05). All 25 women (mean age 75.0, SD 4.7) with hip fracture as inclusion fracture had no significant changes in HRQOL between two and seven years and did not differ from the reference group regarding HRQOL after seven years. The vertebral group had significantly lower values for bodily pain, vitality, role-emotional function and mental health compared to the hip group. HRQOL showed a positive relationship between physical activity, static balance and handgrip strength.</p> <p>Conclusion</p> <p>The long-term reduction of HRQOL in women with vertebral fracture emerged clearly in this study. The relationships between HRQOL and physical performance in women with vertebral and hip fracture raise questions for more research.</p

    Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms

    Get PDF
    Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P. aeruginosa biofilms. At physiologically relevant concentrations, extracellular DNA has antimicrobial activity, causing cell lysis by chelating cations that stabilize lipopolysaccharide (LPS) and the outer membrane (OM). DNA-mediated killing occurred within minutes, as a result of perturbation of both the outer and inner membrane (IM) and the release of cytoplasmic contents, including genomic DNA. Sub-inhibitory concentrations of DNA created a cation-limited environment that resulted in induction of the PhoPQ- and PmrAB-regulated cationic antimicrobial peptide resistance operon PA3552–PA3559 in P. aeruginosa. Furthermore, DNA-induced expression of this operon resulted in up to 2560-fold increased resistance to cationic antimicrobial peptides and 640-fold increased resistance to aminoglycosides, but had no effect on β-lactam and fluoroquinolone resistance. Thus, the presence of extracellular DNA in the biofilm matrix contributes to cation gradients, genomic DNA release and inducible antibiotic resistance. DNA-rich environments, including biofilms and other infection sites like the CF lung, are likely the in vivo environments where extracellular pathogens such as P. aeruginosa encounter cation limitation

    Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101

    Get PDF
    Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition about the functions of bacterial exopolysaccharides

    Systemic Biomarkers of Neutrophilic Inflammation, Tissue Injury and Repair in COPD Patients with Differing Levels of Disease Severity

    Get PDF
    The identification and validation of biomarkers to support the assessment of novel therapeutics for COPD continues to be an important area of research. The aim of the current study was to identify systemic protein biomarkers correlated with measures of COPD severity, as well as specific protein signatures associated with comorbidities such as metabolic syndrome. 142 protein analytes were measured in serum of 140 patients with stable COPD, 15 smokers without COPD and 30 non-smoking controls. Seven analytes (sRAGE, EN-RAGE, NGAL, Fibrinogen, MPO, TGF-α and HB-EGF) showed significant differences between severe/very severe COPD, mild/moderate COPD, smoking and non-smoking control groups. Within the COPD subjects, univariate and multivariate analyses identified analytes significantly associated with FEV1, FEV1/FVC and DLCO. Most notably, a set of 5 analytes (HB-EGF, Fibrinogen, MCP-4, sRAGE and Sortilin) predicted 21% of the variability in DLCO values. To determine common functions/pathways, analytes were clustered in a correlation network by similarity of expression profile. While analytes related to neutrophil function (EN-RAGE, NGAL, MPO) grouped together to form a cluster associated with FEV1 related parameters, analytes related to the EGFR pathway (HB-EGF, TGF-α) formed another cluster associated with both DLCO and FEV1 related parameters. Associations of Fibrinogen with DLCO and MPO with FEV1/FVC were stronger in patients without metabolic syndrome (r  =  −0.52, p  = 0.005 and r  =  −0.61, p  = 0.023, respectively) compared to patients with coexisting metabolic syndrome (r  =  −0.25, p  = 0.47 and r  =  −0.15, p  = 0.96, respectively), and may be driving overall associations in the general cohort. In summary, our study has identified known and novel serum protein biomarkers and has demonstrated specific associations with COPD disease severity, FEV1, FEV1/FVC and DLCO. These data highlight systemic inflammatory pathways, neutrophil activation and epithelial tissue injury/repair processes as key pathways associated with COPD

    Ecological phytochemistry of Cerrado (Brazilian savanna) plants

    Get PDF
    The Cerrado (the Brazilian savanna) is one of the vegetation formations of great biodiversity in Brazil and it has experienced strong deforestation and fragmentation. The Cerrado must contain at least 12,000 higher plant species.We discuss the ecological relevance of phytochemical studies carried out on plants from the Cerrado, including examples of phytotoxicity, antifungal, insecticidal and antibacterial activities. The results have been classified according to activity and plant family. The most active compounds have been highlighted and other activities are discussed. A large number of complex biochemical interactions occur in this system. However, only a small fraction of the species has been studied from the phytochemical viewpoint to identify the metabolites responsible for these interactions

    Treatments for people who use anabolic androgenic steroids: a scoping review.

    Get PDF
    BACKGROUND: A growing body of evidence suggests that anabolic androgenic steroids (AAS) are used globally by a diverse population with varying motivations. Evidence has increased greatly in recent years to support understanding of this form of substance use and the associated health harms, but there remains little evidence regarding interventions to support cessation and treat the consequences of use. In this scoping review, we identify and describe what is known about interventions that aim to support and achieve cessation of AAS, and treat and prevent associated health problems. METHODS: A comprehensive search strategy was developed in four bibliographic databases, supported by an iterative citation searching process to identify eligible studies. Studies of any psychological or medical treatment interventions delivered in response to non-prescribed use of AAS or an associated harm in any setting were eligible. RESULTS: In total, 109 eligible studies were identified, which included case reports representing a diverse range of disciplines and sources. Studies predominantly focussed on treatments for harms associated with AAS use, with scant evidence on interventions to support cessation of AAS use or responding to dependence. The types of conditions requiring treatment included psychiatric, neuroendocrine, hepatic, kidney, cardiovascular, musculoskeletal and infectious. There was limited evidence of engagement with users or delivery of psychosocial interventions as part of treatment for any condition, and of harm reduction interventions initiated alongside, or following, treatment. Findings were limited throughout by the case report study designs and limited information was provided. CONCLUSION: This scoping review indicates that while a range of case reports describe treatments provided to AAS users, there is scarce evidence on treating dependence, managing withdrawal, or initiating behaviour change in users in any settings. Evidence is urgently required to support the development of effective services for users and of evidence-based guidance and interventions to respond to users in a range of healthcare settings. More consistent reporting in articles of whether engagement or assessment relating to AAS was initiated, and publication within broader health- or drug-related journals, will support development of the evidence base

    Engineered allosteric activation of kinases in living cells

    Get PDF
    Studies of cellular and tissue dynamics benefit greatly from tools that can control protein activity with specificity and precise timing in living systems. We describe here a new approach to confer allosteric regulation specifically on the catalytic activity of kinases. A highly conserved portion of the kinase catalytic domain is modified with a small protein insert that inactivates catalytic activity, but does not affect other protein interactions. Catalytic activity is restored by addition of rapamycin or non-immunosuppresive analogs (Fig. 1A). We demonstrate the approach by specifically activating focal adhesion kinase (FAK) within minutes in living cells, thereby demonstrating a novel role for FAK in regulation of membrane dynamics. Molecular modeling and mutagenesis indicate that the protein insert reduces activity by increasing the flexibility of the catalytic domain. Drug binding restores activity by increasing rigidity. Successful regulation of Src and p38 suggest that modification of this highly conserved site will be applicable to other kinases

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore