40 research outputs found
Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences
The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009aâb; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported
by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on
18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based
researchers who signed it in the short time span from 20 September to 6 October 2016
Polycyclic aromatic hydrocarbons in binary mixtures modulate the efficiency of benzo[a]pyrene to form DNA adducts in human cells
International audienc
Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of benzo[a]pyrene as a pure compound and in complex mixtures
International audienc
High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle.
International audienceElevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase CΞ and protein kinase CΔ membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice
Exercise-induced lipid mobilization in subcutaneous adipose tissue is mainly related to natriuretic peptides in overweight men.
International audienceInvolvement of sympathetic nervous system and natriuretic peptides in the control of exercise-induced lipid mobilization was compared in overweight and lean men. Lipid mobilization was determined using local microdialysis during exercise. Subjects performed 35-min exercise bouts at 60% of their maximal oxygen consumption under placebo or after oral tertatolol [a beta-adrenergic receptor (AR) antagonist]. Under placebo, exercise increased dialysate glycerol concentration (DGC) in both groups. Phentolamine (alpha-AR antagonist) potentiated exercise-induced lipolysis in overweight but not in lean subjects; the alpha(2)-antilipolytic effect was only functional in overweight men. After tertatolol administration, the DGC increased similarly during exercise no matter which was used probe in both groups. Compared with the control probe under placebo, lipolysis was reduced in lean but not in overweight men treated with the beta-AR blocker. Tertatolol reduced plasma nonesterified fatty acids and insulin concentration in both groups at rest. Under placebo or tertatolol, the exercise-induced changes in plasma nonesterified fatty acids, glycerol, and insulin concentrations were similar in both groups. Exercise promoted a higher increase in catecholamine and ANP plasma levels after tertatolol administration. In conclusion, the major finding of our study is that in overweight men, in addition to an increased alpha(2)-antilipolytic effect, the lipid mobilization in subcutaneous adipose tissue that persists during exercise under beta-blockade is not dependent on catecholamine action. On the basis of correlation findings, it seems to be related to a concomitant exercise-induced rise in plasma ANP when exercise is performed under tertatolol intake and a decrease in plasma insulin
Molecular Biomarkers for Weight Control in Obese Individuals Subjected to a Multiphase Dietary Intervention
Context: Although calorie restriction has proven beneficial for weight loss, long-term weight control is variable between individuals.Objective: To identify biomarkers of successful weight control during a dietary intervention (DI).Design, Setting, and Participants: Adipose tissue (AT) transcriptomes were compared between 21 obese individuals who either maintained weight loss or regained weight during the DI. Results were validated on 310 individuals from the same study using quantitative reverse transcription polymerase chain reaction and protein levels of potential circulating biomarkers measured by enzyme-linked immunosorbent assay.Intervention: Individuals underwent 8 weeks of low-calorie diet, then 6 months of ad libitum diet.Outcome Measure: Weight changes at the end of the DI.Results: We evaluated six genes that had altered expression during DI, encode secreted proteins, and have not previously been implicated in weight control (EGFL6, FSTL3, CRYAB, TNMD, SPARC, IGFBP3), as well as genes for which baseline expression differed between those with good and poor weight control (ASPN, USP53). Changes in plasma concentrations of EGFL6, FSTL3, and CRYAB mirrored AT messenger RNA expression; all decreased during DI in individuals with good weight control. ASPN and USP53 had higher baseline expression in individuals who went on to have good weight control. Expression quantitative trait loci analysis found polymorphisms associated with expression levels of USP53 in AT. A regulatory network was identified in which transforming growth factor ÎČ1 (TGF-ÎČ1) was responsible for downregulation of certain genes during DI in good controllers. Interestingly, ASPN is a TGF-ÎČ1 inhibitor.Conclusions: We found circulating biomarkers associated with weight control that could influence weight management strategies and genes that may be prognostic for successful weight control