36 research outputs found
Keskkonnaseire füüsikalised alused
BeSt programmi toetusel loodud kursuse konspekt keskkonnaseires kasutatavatest füüsikalistest meetoditest ja füüsikalistest nähtustest, millega tuleb sealjuures arvestada
Õhu saasteseire korraldamine
BeSt praogrammi toetusel loodud kursuse konspekt õhu saasteseirest: mõõtmised, andmeedastus, mudelarvutused, seiresüsteemi haldamine
Bryophyte species and communities on various roofing materials, Estonia
Considering the recent growth of interest in using mosses in creating vegetated green roofs, we set the aim of our study to get an overview of the variety of moss and liverwort species and communities growing spontaneously on roofs. Data were collected from 67 roofs of five different types of materials: fibre cement, bitumen, stone, thatched and steel from Tallinn and rural areas on Hiiumaa Island and in South Estonia. Indicator species analysis, MRPP, cluster analysis and ordination methods (DCA, CCA) were used for data analysis. As a result of this research, generalist bryophytes occurring on all types of roofing materials were studied and bryophyte species characteristics for certain material types were identified. The thatched roofs differed most clearly from the other roof types in their species composition and had the highest species diversity. Stone and fibre cement roofs had similar species composition. The results revealed significant dependence of the composition of the bryophyte flora on roofs on the density of the bryophyte carpet formed over time on the roof and the presence of a tree canopy above the roof. Other important factors were roof relief, the height of the roof from the ground and the indicator of environmental pollution NOx. However, the studied roofs in Tallinn and rural areas did not show significant differences in the species composition of bryophytes. Five communities were delimited: (1) Syntrichia ruralis – Schistidium apocarpum; (2) Orthotrichum speciosum – Bryum argenteum; (3) Brachythecium rutabulum – Hypnum cupressiforme; (4) Ceratodon purpureus – Rhytidiadelphus squarrosus; and (5) Pleurozium schreberi – Dicranum scoparium. The mentioned communities inhabited locations that differed in environmental conditions. The findings of this research can help choose the roofing material and species suitable for a certain location in creating moss greenery on roofs
Syntrichia ruralis as a suitable bioindicator for urban areas – the case study of Tallinn city
Environmental pollution is one of the most important problems in urban environment. Mosses are good indicators of air pollution. In Estonia, heavy metals have been measured from Pleurozium schreberi and Hylocomium splendens, which do not grow in areas of Tallinn with a higher pollution load. In the present study, Cu, Fe and Cd were measured from five moss species growing in contaminated as well less polluted areas of Tallinn. Based on stationary and street pollution source inventory and air pollution dispersion modelling, the long-term average concentrations of fine particles (PM10) and nitrogen oxides (NOx) in air were estimated. The work revealed that it is possible to find a moss species that is common in Tallinn and grows in both polluted and less polluted areas – Syntrichia ruralis, which is the most suitable species for bioindication based on this work. Moss species Ceratodon purpureus accumulated the most Cd, Cu, and Fe, then Brachythecium rutabulum/Sciuro-hypnum curtum, and Rhytidiadelphus squarrosus the least. Statistically significant higher Fe concentrations were in the Syntrichia ruralis, compared to the Sciuro-hypnum curtum and Rhytidiadelphus squarrosus. The Syntrichia ruralis also had significantly higher Cd content compared to the Brachythecium rutabulum/Sciuro-hypnum curtum. The results of the GLM analysis showed that the content of various heavy metals depends on the moss species and the degree of fine particles in the environment, and it didn't depend on whether the moss grows on the soil or a hard substrate such as concrete, stone or asphalt
Diffusion Restrictions Surrounding Mitochondria: A Mathematical Model of Heart Muscle Fibers
Several experiments on permeabilized heart muscle fibers suggest the existence of diffusion restrictions grouping mitochondria and surrounding ATPases. The specific causes of these restrictions are not known, but intracellular structures are speculated to act as diffusion barriers. In this work, we assume that diffusion restrictions are induced by sarcoplasmic reticulum (SR), cytoskeleton proteins localized near SR, and crowding of cytosolic proteins. The aim of this work was to test whether such localization of diffusion restrictions would be consistent with the available experimental data and evaluate the extent of the restrictions. For that, a three-dimensional finite-element model was composed with the geometry based on mitochondrial and SR structural organization. Diffusion restrictions induced by SR and cytoskeleton proteins were varied with other model parameters to fit the set of experimental data obtained on permeabilized rat heart muscle fibers. There are many sets of model parameters that were able to reproduce all experiments considered in this work. However, in all the sets, <5–6% of the surface formed by SR and associated cytoskeleton proteins is permeable to metabolites. Such a low level of permeability indicates that the proteins should play a dominant part in formation of the diffusion restrictions
Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modeling techniques
<p>Abstract</p> <p>Background</p> <p>Health impact assessments (HIA) use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches.</p> <p>Methods</p> <p>Tallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390 000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM<sub>2.5</sub>) from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM<sub>10 </sub>or PM<sub>2.5 </sub>levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6–11%) per 10 μg/m<sup>3 </sup>increase of annual mean PM<sub>2.5 </sub>concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62–1.67%) and 0.73% (95% CI 0.47–0.93%) per 10 μg/m<sup>3 </sup>increase of PM<sub>10</sub>. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY).</p> <p>Results</p> <p>The annual population-weighted-modeled exposure to locally emitted PM<sub>2.5 </sub>in Tallinn was 11.6 μg/m<sup>3</sup>. Our analysis showed that it corresponds to 296 (95% CI 76528) premature deaths resulting in 3859 (95% CI 10236636) Years of Life Lost (YLL) per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17–1.10) years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of premature deaths, the decrease in life expectancy among the actual cases is around 13 years. As for the morbidity, the short-term effects of air pollution were estimated to result in an additional 71 (95% CI 43–104) respiratory and 204 (95% CI 131–260) cardiovascular hospitalizations per year. The biggest external costs are related to the long-term effects on mortality: this is on average €150 (95% CI 40–260) million annually. In comparison, the costs of short-term air-pollution driven hospitalizations are small €0.3 (95% CI 0.2–0.4) million.</p> <p>Conclusion</p> <p>Sectioning the city for analysis and using GIS systems can help to improve the accuracy of air pollution health impact estimations, especially in study areas with poor air pollution monitoring data but available dispersion models.</p
Bidirectionality and Compartmentation of Metabolic Fluxes Are Revealed in the Dynamics of Isotopomer Networks
Isotope labeling is one of the few methods of revealing the in vivo bidirectionality and compartmentalization of metabolic fluxes within metabolic networks. We argue that a shift from steady state to dynamic isotopomer analysis is required to deal with these cellular complexities and provide a review of dynamic studies of compartmentalized energy fluxes in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex metabolic behaviour on a molecular level is prerequisite for the intelligent design of genetically modified organisms able to realize their potential of revolutionizing food, energy, and pharmaceutical production. We describe techniques to explore the bidirectionality and compartmentalization of metabolic fluxes using information contained in the isotopic transient, and discuss the integration of kinetic models with MFA. The flux parameters of an example metabolic network were optimized to examine the compartmentalization of metabolites and and the bidirectionality of fluxes in the TCA cycle of Saccharomyces uvarum for steady-state respiratory growth
A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions
This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015-2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O-3 and the total gaseous oxidant (O-X = NO2 + O-3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015-2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples' mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015-2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O-3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of similar to 70%. The SO2 anomalies were negative for 2020 compared to 2015-2019 (between similar to 25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to similar to 40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of similar to 60%). Analysis of the total oxidant (OX = NO2 + O-3) showed that primary NO2 emissions at urban locations were greater than the O-3 production, whereas at background sites, O-X was mostly driven by the regional contributions rather than local NO2 and O-3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewe
A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission
This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio