12 research outputs found

    Modelling rheumatoid arthritis : a hybrid modelling framework to describe pannus formation in a small joint

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder that causes pain, swelling and stiffness in the joints, and negatively impacts the life of affected patients. The disease does not have a cure yet, as there are still many aspects of this complex disorder that are not fully understood. While mathematical models can shed light on some of these aspects, to date there are few such models that can be used to better understand the disease. As a first step in the mechanistic understanding of RA, in this study we introduce a new hybrid mathematical modelling framework that describes pannus formation in a small proximal interphalangeal (PIP) joint. We perform numerical simulations with this new model, to investigate the impact of different levels of immune cells (macrophages and fibroblasts) on the degradation of bone and cartilage. Since many model parameters are unknown and cannot be estimated due to a lack of experiments, we also perform a sensitivity analysis of model outputs to various model parameters (single parameters or combinations of parameters). Finally, we discuss how our model could be applied to investigate current treatments for RA, for example, methotrexate, TNF-inhibitors or tocilizumab, which can impact different model parameters.Publisher PDFPeer reviewe

    On Immunotherapies and Cancer Vaccination Protocols: A Mathematical Modelling Approach

    Get PDF
    In this paper we develop a new mathematical model of immunotherapy and cancer vaccination, focusing on the role of antigen presentation and co-stimulatory signaling pathways in cancer immunology. We investigate the effect of different cancer vaccination protocols on the well-documented phenomena of cancer dormancy and recurrence, and we provide a possible explanation of why adoptive (i.e. passive) immunotherapy protocols can sometimes actually promote tumour growth instead of inhibiting it (a phenomenon called immunostimulation), as opposed to active vaccination protocols based on tumour-antigen pulsed dendritic cells. Significantly, the results of our computational simulations suggest that elevated numbers of professional antigen presenting cells correlate well with prolonged time periods of cancer dormancy. (C) 2009 Elsevier Ltd. All rights reserved

    Computational Modeling of Single-Cell Migration::The Leading Role of Extracellular Matrix Fibers

    Get PDF
    Cell migration is vitally important in a wide variety of biological contexts ranging from embryonic development and wound healing to malignant diseases such as cancer. It is a very complex process that is controlled by intracellular signaling pathways as well as the cell's microenvironment. Due to its importance and complexity, it has been studied for many years in the biomedical sciences, and in the last 30 years it also received an increasing amount of interest from theoretical scientists and mathematical modelers. Here we propose a force-based, individual-based modeling framework that links single-cell migration with matrix fibers and cell-matrix interactions through contact guidance and matrix remodelling. With this approach, we can highlight the effect of the cell's environment on its migration. We investigate the influence of matrix stiffness, matrix architecture, and cell speed on migration using quantitative measures that allow us to compare the results to experiments

    Modelling the effects of bacterial cell state and spatial location on tuberculosis treatment: Insights from a hybrid multiscale cellular automaton model

    Get PDF
    This work was supported by the Medical Research Council [grant number MR/P014704/1] and the PreDiCT-TB consortium (IMI Joint undertaking grant agreement number 115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution.If improvements are to be made in tuberculosis (TB) treatment, an increased understanding of disease in the lung is needed. Studies have shown that bacteria in a less metabolically active state, associated with the presence of lipid bodies, are less susceptible to antibiotics, and recent results have highlighted the disparity in concentration of different compounds into lesions. Treatment success therefore depends critically on the responses of the individual bacteria that constitute the infection. We propose a hybrid, individual-based approach that analyses spatio-temporal dynamics at the cellular level, linking the behaviour of individual bacteria and host cells with the macroscopic behaviour of the microenvironment. The individual elements (bacteria, macrophages and T cells) are modelled using cellular automaton (CA) rules, and the evolution of oxygen, drugs and chemokine dynamics are incorporated in order to study the effects of the microenvironment in the pathological lesion. We allow bacteria to switch states depending on oxygen concentration, which affects how they respond to treatment. This is the first multiscale model of its type to consider both oxygen-driven phenotypic switching of the Mycobacterium tuberculosis and antibiotic treatment. Using this model, we investigate the role of bacterial cell state and of initial bacterial location on treatment outcome. We demonstrate that when bacteria are located further away from blood vessels, less favourable outcomes are more likely, i.e. longer time before infection is contained/cleared, treatment failure or later relapse. We also show that in cases where bacteria remain at the end of simulations, the organisms tend to be slower-growing and are often located within granulomas, surrounded by caseous material.Publisher PDFPeer reviewe

    Mathematical modelling of cancer cell invasion of tissue

    No full text
    Cancer cell invasion of tissue is a complex biological process during which cell migration through the extracellular matrix, facilitated by the secretion of degradative enzymes, is a central process. Cells can deform their cytoplasm to produce pseudopodia, anchor these pseudopodia to neighbouring spatial locations in the tissue and detach earlier bonds, to enable them to move and therefore migrate in a specified direction. Genetic mutations, chemoattractant gradients or a lack of nutrients in their current location can stimulate cell motility and cause them to migrate. When cancer cells migrate they degrade the surrounding extracellular matrix, thereby invading new territory. In this paper we propose a hybrid discrete-continuum two-scale model to study the early growth of solid tumours and their ability to degrade and migrate into the surrounding extracellular matrix. The cancer cells are modelled as discrete individual entities which interact with each other via a potential function, while the spatio-temporal dynamics of the other variables in the model (extracellular matrix, matrix degrading enzymes and degraded stroma) are governed by partial differential equations.</p

    Physical oncology:a bench-to-bedside quantitative and predictive approach

    No full text
    Cancer models relating basic science to clinical care in oncology may fail to address the nuances of tumor behavior and therapy, as in the case, discussed herein, of the complex multiscale dynamics leading to the often observed enhanced invasiveness paradoxically induced by the very anti-angiogenic therapy designed to destroy the tumor. Studies would benefit from approaches that quantitatively link the multiple physical and temporal scales from molecule to tissue in order to offer outcome predictions for individual patients. Physical oncology is an approach that applies fundamental principles from the physical and biological sciences to explain certain cancer behaviors as observable characteristics arising from the underlying physical and biochemical events. For example, the transport of oxygen molecules through tissue affects phenotypic characteristics such as cell proliferation, apoptosis, and adhesion, which in turn underlie the patient-scale tumor growth and invasiveness. Our review of physical oncology illustrates how tumor behavior and treatment response may be a quantifiable function of marginally stable molecular/cellular conditions modulated by inhomogeneity. By incorporating patient-specific genomic, proteomic, metabolomic, and cellular data into multiscale physical models, physical oncology could complement current clinical practice through enhanced understanding of cancer behavior, thus potentially improving patient survival

    Disease induced dynamics in host-parasitoid systems: chaos and coexistence

    No full text
    All animals and plants are, to some extent, susceptible to disease caused by varying combinations of parasites, viruses and bacteria. In this paper, we present a mathematical model of interactions between a host, two parasitoids and a pathogen which shows that the presence of an infection can preserve and promote diversity in such multi-species systems. Initially, we use a system of ordinary differential equations to investigate interactions between two species of parasitoids, a host and a host infection. We show that the presence of all four species is necessary for the system as a whole to persist, and that in particular, the presence of the pathogen is necessary for the coexistence of the two parasitoid species. The inclusion of infection induces a wide range of dynamics, including chaos, and these dynamics are robust for a wide range of parameter values. We then extend the model to include spatial effects by introducing random motility (diffusion) of all three species and examine the subsequent spatio-temporal dynamics, including travelling waves and other more complicated heterogeneous behaviour. The computational simulation results of the model suggest that infection in the hosts can blunt the effects of competition between parasitoids, allowing the weaker competitor to survive. Regardless of the nature of the stability of the coexistent steady state of the system, there is an initial period of transient dynamics, the length of which can be extended by an appropriate choice of initial conditions. The existence of these transient dynamics suggests that systems subject to regular restoration to a starting state, such as agro-ecosystems, may be kept in a continual state of dynamic transience, and this has implications for the use of natural enemies to control insect pests, the preservation of biodiversity in farmland habitats and the more general dynamics of disease processes

    Modeling the Influence of the E-Cadherin-β-Catenin Pathway in Cancer Cell Invasion:a multiscale approach

    Get PDF
    In this article, we show, using a mathematical multiscale model, how cell adhesion may be regulated by interactions between E-cadherin and β-catenin and how the control of cell adhesion may be related to cell migration, to the epithelial-mesenchymal transition and to invasion in populations of eukaryotic cells. E-cadherin mediates cell-cell adhesion and plays a critical role in the formation and maintenance of junctional contacts between cells. Loss of E-cadherin-mediated adhesion is a key feature of the epithelial-mesenchymal transition. β-catenin is an intracellular protein associated with the actin cytoskeleton of a cell. E-cadherins bind to β-catenin to form a complex which can interact both with neighboring cells to form bonds, and with the cytoskeleton of the cell. When cells detach from one another, β-catenin is released into the cytoplasm, targeted for degradation, and downregulated. In this process there are multiple protein-complexes involved which interact with β-catenin and E-cadherin. Within a mathematical individual-based multiscale model, we are able to explain experimentally observed patterns solely by a variation of cell-cell adhesive interactions. Implications for cell migration and cancer invasion are also discussed
    corecore