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a b s t r a c t 

If improvements are to be made in tuberculosis (TB) treatment, an increased understanding of disease 

in the lung is needed. Studies have shown that bacteria in a less metabolically active state, associated 

with the presence of lipid bodies, are less susceptible to antibiotics, and recent results have highlighted 

the disparity in concentration of different compounds into lesions. Treatment success therefore depends 

critically on the responses of the individual bacteria that constitute the infection. 

We propose a hybrid, individual-based approach that analyses spatio-temporal dynamics at the cel- 

lular level, linking the behaviour of individual bacteria and host cells with the macroscopic behaviour of 

the microenvironment. The individual elements (bacteria, macrophages and T cells) are modelled using 

cellular automaton (CA) rules, and the evolution of oxygen, drugs and chemokine dynamics are incorpo- 

rated in order to study the effects of the microenvironment in the pathological lesion. We allow bacteria 

to switch states depending on oxygen concentration, which affects how they respond to treatment. This 

is the first multiscale model of its type to consider both oxygen-driven phenotypic switching of the My- 

cobacterium tuberculosis and antibiotic treatment. Using this model, we investigate the role of bacterial 

cell state and of initial bacterial location on treatment outcome. We demonstrate that when bacteria are 

located further away from blood vessels, less favourable outcomes are more likely, i.e. longer time before 

infection is contained/cleared, treatment failure or later relapse. We also show that in cases where bac- 

teria remain at the end of simulations, the organisms tend to be slower-growing and are often located 

within granulomas, surrounded by caseous material. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Although tuberculosis (TB) has long been both preventable and 

curable, a person dies from tuberculosis approximately every eigh- 

teen seconds (WHO Global Health Report 2011). Current treatment 

requires at least six months of multiple antibiotics to ensure com- 

plete cure and more effective drugs are urgently needed to shorten 

treatment. Recent clinical trials have not resulted in a shortening of 

therapy and there is a need to understand why these trials were 

unsuccessful and which new regimen should be chosen for testing 

in the costly long-term pivotal trial stage ( Gillespie et al., 2014 ). 

The current drug development pathway in tuberculosis is im- 

perfect as standard preclinical methods may not capture the cor- 

rect pharmacodynamics of the antibiotics. Using in vitro methods, 

∗ Corresponding author. 

E-mail address: rec9@st-andrews.ac.uk (R. Bowness). 

it is difficult to accurately reproduce the natural physiological envi- 

ronment of Mycobacterium tuberculosis ( M. tuberculosis ) and the re- 

liability of in vivo models may be limited in their ability to mimic 

human pathophysiology. 

When M. tuberculosis bacteria enter the lungs, a complex im- 

mune response ensues. The outcome of infection is dependent on 

how effective the host’s immune system is and on the pathogenic- 

ity of the bacteria. The majority of patients will be able to con- 

trol infection and contain it within a granuloma, which is a com- 

bination of immune cells that surround the bacteria. The centre of 

the granuloma may exhibit caseous necrosis and have a cheese- 

like appearance ( Canetti et al., 1955 ). Most commonly, granulomas 

will undergo fibrosis or calcification and the infection is contained 

and becomes latent ( Canetti et al., 1955; Grosset, 1980 ). In these 

cases, however, the individuals are still at risk of future relapse. If 

the granulomas do not contain the disease and infection continues, 

the bacteria can grow extracellularly. 

https://doi.org/10.1016/j.jtbi.2018.03.006 

0022-5193/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic of population percentages of outcomes of TB disease. Data taken from ( Ahmad, 2010 ) and references therein. 

Although a minimum of six months of therapy is recom- 

mended, it has long been recognised that many patients require 

less and are culture negative in two months or less ( Fox, 1981 ). 

Shortening treatment to four months or less results in unac- 

ceptably high relapse rates ( Gillespie et al., 2014 ) and studies 

( Singapore, 1981; Study, 1981 ) described in ( Fox et al., 1999 ). It has 

recently been shown that, for some patients who become culture 

negative in only a week, there is still a non-zero risk of relapse 

( Phillips et al., 2016 ). 

Fig. 1 describes the estimates of tuberculosis containment ver- 

sus progression to active disease in the general population. In 

patients with established disease, the outcome is perhaps deter- 

mined by the ability of antibiotics to penetrate to the granuloma 

( Prideaux et al., 2015 ). In order to improve tuberculosis treatment, 

it is therefore vital to ensure sufficient concentrations of antibiotic 

reach the sites of infection ( Via et al., 2015 ). 

It is increasingly recognised that M. tuberculosis is able to enter 

into a state in which it is metabolically less active. Dormant bac- 

teria have reduced susceptibility to antibiotics of which cell wall 

inhibitors are most affected but the action of the RNA polymerase 

inhibitor rifampicin and fluroquinolones acting on DNA gyrase is 

also reduced ( Wayne and Hayes, 1996 ). A significant number of 

metabolic systems are down regulated in response to dormancy 

inducing stresses ( Keren et al., 2004; 2011 ). This slower-growing 

state, associated with the presence of lipid bodies in the mycobac- 

teria can increase resistance by 15 fold ( Hammond et al., 2015 ). It 

has also recently been shown that around 60% of bacteria in the 

lung are lipid rich ( Baron et al., 2017 ). The reduced susceptibility 

of some bacteria to antibiotics means that it is very important to 

study and analyse the heterogeneity of the bacteria so more ef- 

fective treatment protocols can be developed. The spatial location 

of the bacteria is also vitally important as the ability of antibi- 

otics to penetrate different sites of infection effectively is variable 

( Prideaux et al., 2015 ). 

Multiple routes to dormancy have been reported and reviewed 

in detail ( Lipworth et al., 2016 ). Oxygen concentration was one 

of the first mechanisms demonstrated in an in vitro model to 

result in dormancy, and in vitro models have been developed 

to explore the antibiotic susceptibility and metabolism of organ- 

isms in this slower-growing state ( Wayne and Sramek, 1994 ). It 

has been hypothesised by multiple authors that lesions containing 

slower-growing bacteria are responsible for relapse ( Grosset, 1980; 

Prideaux et al., 2015 ). 

Cellular automaton modelling (and individual-based modelling 

in general) has been used to model other diseases, most notably 

tumour development and progression in cancer ( Alarcón et al., 

2003; Dormann and Deutsch, 2002; Gerlee and Anderson, 2007; 

Powathil et al., 2012; Swat et al., 2012; Zhang et al., 2009 ). Tu- 

berculosis granulomas have been simulated previously through an 

agent-based model called ‘GranSim’ ( Cilfone et al., 2013; Marino 

et al., 2011; Pienaar et al., 2015; Segovia-Juarez et al., 2004 ), which 

aims to reconstruct the immunological processes involved in the 

development of a granuloma. 

In ( Pienaar et al., 2016 ) the authors map metabolite and gene- 

scale perturbations, finding that slowly replicating phenotypes 

of M. tuberculosis preserve the bacterial population in vivo by 

continuously adapting to dynamic granuloma microenvironments. 

( Sershen et al., 2016 ) also combines a physiological model of oxy- 

gen dynamics, an agent-based model of cellular immune response 

and a systems-based model of M.tb metabolic dynamics. Their 

study suggests that the dynamics of granuloma organisation me- 

diates oxygen availability and illustrates the immunological contri- 

bution of this structural host response to infection outcome. 

In this paper, we build on previous models such as ( Cilfone 

et al., 2013; Marino et al., 2011; Pienaar et al., 2015; Segovia-Juarez 

et al., 2004 ), and report the development of a hybrid-cellular au- 

tomaton model. Our model is the first multiscale model to consider 

both oxygen dynamics and antibiotic treatment effects within a tu- 

berculosis lesion, in order to investigate the role of bacterial cell 

state heterogeneity and bacterial position within the tuberculosis 

lesion on the outcome of disease. This is a unique focus for this 

type of model. 

2. The hybrid multiscale mathematical model 

The model simulates the interaction between TB bacteria, T 

cells and macrophages. Immune responses to the bacterial in- 

fection can lead to an accumulation of dead TB bacteria and 

macrophages, creating caseum. Oxygen diffuses into the system 

from blood vessels: bacteria switch from a slow-growing (lipid 

rich) to a fast-growing (lipid poor) phenotype in an oxygen- 

rich environment (proximate to the blood vessels). Chemokine 

molecules are secreted by the macrophages, which direct the 

movement of the immune cells. We then investigate the effect that 

antibiotics have on the infection. 

Our spatial domain is a two dimensional computational grid, 

where each grid point represents either a TB bacterium, a 

macrophage, a T cell, caseum, the cross-section of a blood ves- 

sel or the extracellular matrix which goes to make up the local 

microenvironment. The spatial size of this computational grid has 
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Fig. 2. Schematic describing the basic processes in the model. 

Fig. 3. Plot illustrating (a) a fixed, uniform distribution of blood vessel cross sec- 

tions throughout the spatial domain used in the cellular automaton simulations and 

(b) one outcome of a random distribution of the blood vessels. 

been chosen so that each automaton element is approximately the 

same size as the largest element in the system: the macrophage. 

At present we allow each grid cell to be occupied by a maximum 

of one element. 

Our model is made up of five main components: (1) Discrete 

elements - the grid cell is occupied either by a TB bacterium, a 

macrophage, a T cell, caseum or is empty. If the grid cell is oc- 

cupied, automaton rules control the outcome; (2) the local oxygen 

concentration, whose evolution is modelled by a partial differential 

equation; (3) chemokine concentrations, modelled by a partial dif- 

ferential equation; (4) antibiotic concentrations, modelled by a par- 

tial differential equation and (5) blood vessels from where the oxy- 

gen and antibiotics are supplied within the domain. A schematic 

overview of the model is given in Fig. 2 . 

2.1. The blood vessel network 

At the tissue scale, we consider oxygen and drug dynamics. We 

introduce a network of blood vessels in the model, which is then 

used as a source of oxygen and antibiotic within the model. Fol- 

lowing Powathil et al. (2012) , we assume blood vessel cross sec- 

tions are distributed throughout the two dimensional domain, with 

density φd = N v /N 

2 , where N v is the number of vessel cross sec- 

tions ( Fig. 3 ). See Table 2 for values of N and N v . This is reasonable 

if we assume that the blood vessels are perpendicular to the cross 

section of interest and there are no branching points through the 

plane of interest ( Da ̧s u et al., 2003; Patel et al., 2001 ). We ignore 

any temporal dynamics or spatial changes of these vessels. 

2.2. Oxygen dynamics 

The oxygen dynamics are modelled using a partial differential 

equation with the blood vessels as sources, forming a continuous 

distribution within the simulation domain. If O ( x , t ) denotes the 

oxygen concentration at position x at time t , then its rate of change 

can be expressed as 

∂O (x , t) 

∂t 
= ∇ . (D O (x ) ∇O (x , t)) + r O m (x ) − φO O (x , t) cell (x , t) , 

(1) 

where D O ( x ) is the diffusion coefficient and φO is the rate of oxy- 

gen consumption by a bacterium or immune cell at position x at 

time t , with cell (x , t) = 1 if position x is occupied by a TB bac- 

terium or immune cell at time t and zero otherwise. Oxygen con- 

sumption rates are different for each cell: φO b 
for the consump- 

tion by bacteria, φO mr 
for resting macrophages, φO ma 

for active 

macrophages, φO mi 
for infected macrophages, φO mci 

for chronically 

infected macrophages and φO t for T cells (see Table 2 for these 

values). m ( x ) denotes the vessel cross section at position x , with 

m (x ) = 1 for the presence of blood vessel at position x , and zero 

otherwise; the term r O m ( x ) therefore describes the production of 

oxygen at rate r O . We assume that the oxygen is supplied through 

the blood vessel network, and then diffuses throughout the tis- 

sue within its diffusion limit. At this time, we assume a constant 

background oxygen level arising from airways and focus on oxy- 

gen diffusion from the vascular system. Since it has been observed 

that when a vessel is surrounded by caseous material, its perfusion 

and diffusion capabilities are impaired ( Datta et al., 2015; Pienaar 

et al., 2016 ), we have incorporated this by considering a lower dif- 

fusion and supply rate in the granuloma structure as compared to 

the normal vessels, i.e. 

D O = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

D O 

D OG 

, inside a granuloma , 

D O , elsewhere in the domain, 
(2) 
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Fig. 4. Plot showing the concentration profile of oxygen supplied from the blood 

vessel network for the (a) the fixed, uniform distribution of blood vessels shown 

in Fig. 3 (a), and (b) the random distribution of blood vessels shown in Fig. 3 (b). 

The red coloured spheres represent the blood vessel cross sections as shown in 

Fig. 3 and the colour map shows the percentages of oxygen concentration. (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

and 

r O = 

⎧ ⎨ 

⎩ 

r O 
r OG 

, inside a granuloma , 

r O , elsewhere in the domain . 

(3) 

The formulation of the model is then completed by prescribing no- 

flux boundary conditions and an initial condition ( Powathil et al., 

2012 ). Fig. 4 shows a representative profile of the spatial distribu- 

tion of oxygen concentration after solving the Eq. (1) with relevant 

parameters as discussed in Section 2.5 . 

2.3. Antibiotic treatments 

In the present model we assume a maximum drug effect, allow- 

ing us to concentrate on the focus of this paper: the comparison 

of bacterial cell state and bacterial spatial location on treatment 

outcome. In future papers, the administration of drugs will more 

closely model the current treatment protocols. In this first iteration 

of the model, the distribution of antibiotic drug type i, Drug i ( x , t ) 

is governed by a similar equation to that of the oxygen distribution 

(1) , given by 

∂Drug i (x , t) 

∂t 
= ∇ . (D Drugi (x ) ∇Drug i (x , t)) + r Drugi m (x ) 

− φDrugi Drug i (x , t) cell (x , t) − ηDrugi Drug i (x , t) , 
(4) 

where D Drugi ( x ) is the diffusion coefficient of the drug, φDrugi is 

the uptake rate of the drug, with φDrugi b 
denoting the uptake rate 

by the bacteria and φDrugi m denoting the uptake rate by the in- 

fected/chronically infected macrophages. r Drugi is the drug supply 

rate by the vascular network and ηDrugi is the drug decay rate. In- 

side a granuloma structure, the diffusion and supply rate are lower 

to account for caseum impairing blood vessels and the fact that 

we know that antibiotic diffusion into granulomata is lower than 

in normal lung tissue ( Kjellsson et al., 2012 ). Hence the transport 

properties and delivery rate of the drug are as follows: 

D Drugi = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

D Drugi 

D DrugiG 

, inside a granuloma , 

D Drugi , elsewhere in the domain, 

(5) 

Table 1 

Parameter values relating to Eqs. (2) , ( 3 ), ( 5 ) and ( 6 ). 

Parameter value Reference 

D OG 2.7 ( Datta et al., 2015 ) 

r OG 4 ( Datta et al., 2015 ) 

D DrugiG 7.28 (R), 3.85 (H) ( Pienaar et al., 2016 ) 

r DrugiG 4 ( Datta et al., 2015 ) 

Table 2 

Diffusion and decay parameters for antibiotics and Chemokine 

molecules. 

Drug/Chemokine Diffusion rate (cm 

2 s −1 ) Decay rate (hr −1 ) 

Rifampicin (R) 1.7 ×10 −6 0.17 

Isoniazid (H) 1.5 ×10 −5 0.35 

Pyrazinamide (Z) 1.6 ×10 −5 0.12 

Ethambutol (E) 1.3 ×10 −5 0.2 

Chemokine 10 −6 0.347 

and 

r Drugi = 

{ r Drugi 

r DrugiG 

, inside a granuloma , 

r Drugi , elsewhere in the domain . 

(6) 

The diffusion rate above is currently based on rifampicin. 

To study the efficacy of the drug, we have assumed a thresh- 

old drug concentration value, below which the drug has no ef- 

fect on the bacteria. If the drug reaches a bacterium or infected 

macrophage when it’s concentration is above this level (which is 

different for fast- and slow-growing extracellular bacteria and for 

intracellular bacteria), then the bacterium will be killed and an 

empty space will be created (this will be described further in 

Section 3.1 ). Parameters are discussed in Section 2.5 . 

2.4. Chemokines 

Various molecules are released by macrophages and other 

immune cells, these molecules act as chemoattractants, attract- 

ing other host cells to the site of infection. Although differ- 

ent chemokines perform different roles at various times, for this 

model, we have chosen to represent the multiple chemokines in- 

volved in the immune response as an aggregate chemokine value. 

Sources of chemokine are derived from infected, chronically in- 

fected and activated macrophages ( Algood et al., 2003 ). The dis- 

tribution of the chemokine molecules, Ch ( x , t ) is also governed in 

a similar way to the oxygen and antibiotic: 

∂Ch (x , t) 

∂t 
= ∇ . (D Ch (x ) ∇Ch (x , t)) + r Ch cell (x , t) − ηCh Ch (x , t) , 

(7) 

where D Ch ( x ) is the diffusion coefficient of the chemokines, r Ch is 

the chemokine supply rate by the macrophages at position x at 

time t , with cell (x , t) = 1 if position x is occupied by an infected, 

chronically infected or activated macrophage at time t and zero 

otherwise. ηCh is the chemokine decay rate. 

2.5. Parameter estimation 

In order to simulate the model with biologically relevant out- 

comes, it is important to use accurate parameters values. Most of 

the parameters are chosen from previous mathematical and exper- 

imental papers (see Tables 1 –Table 3 for a summary of the param- 

eter values). 

The time step was calculated by considering the fastest process 

in our system, the oxygen diffusion. The oxygen dynamics are gov- 

erned by a reaction diffusion equation, where the parameters are 

chosen from previously published work ( Macklin et al., 2012 ). We 
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Table 3 

Parameters. When there is a range for a value, it is set randomly by the model. 

Parameter Description Value Source 

N Size of grid ( N × N ) 100 ( Segovia-Juarez et al., 2004 ) 

N v Number of blood vessels 49 ( Cilfone et al., 2013 ) 

φO b (Micromoles/cell/hr) Oxygen consumption rate of bacteria 20 . 8 × 10 −6 ( Sershen et al., 2016 ) 

φO mr 
(Micromoles/cell/hr) Oxygen consumption rate of Mr 1 . 15 × 10 −7 ( Sershen et al., 2016 ) 

φO ma 
(Micromoles/cell/hr) Oxygen consumption rate of Ma 2 . 3 × 10 −7 ( Sershen et al., 2016 ) 

φO mi 
(Micromoles/cell/hr) Oxygen consumption rate of Mi 3 . 45 × 10 −7 ( Sershen et al., 2016 ) 

φO mci 
(Micromoles/cell/hr) Oxygen consumption rate of Mci 4 . 6 × 10 −7 ( Sershen et al., 2016 ) 

φO t (Micromoles/cell/hr) Oxygen consumption rate of T cells 0 . 14375 × 10 −7 ( Sershen et al., 2016 ) 

φDrug b (Micromoles/cell/hr) Antibiotic consumption rate of extracellular bacteria 2 . 1 × 10 −11 ( Pienaar et al., 2015 ) 

φDrug mi 
(Micromoles/cell/hr) Antibiotic consumption rate of infected macrophages 1 . 9 × 10 −6 ( Pienaar et al., 2015 ) 

Rep f (hours) Replication rate of fast-growing bacteria 15–32 ( Shorten et al., 2013 ) 

Rep s (hours) Replication rate of slow-growing bacteria 48–96 ( Hendon-Dunn et al., 2016 ) 

O low (%) O 2 threshold for fast → slow-growing bacteria 6 Estimated - see Section 4.1 

O high (%) O 2 threshold for slow → fast-growing bacteria 65 Estimated - see Section 4.1 

Mr init Initial number of Mr in the domain 105 ( Cilfone et al., 2013 ) 

MrMa Probability of Mr → Ma (multiplied by no. of T cells in neighbourhood) 9 ( Cilfone et al., 2013 ) 

N ici Number of bacteria needed for Mi → Mci 10 ( Cilfone et al., 2013 ) 

N cib Number of bacteria needed for Mci to burst 20 ( Cilfone et al., 2013 ) 

M life (days) Lifespan of Mr, Mi and Mci 0–100 ( Van Furth et al., 1973 ) 

Ma life (days) Lifespan of Ma 10 ( Segovia-Juarez et al., 2004 ) 

t moveMr (mins) Time interval for Mr movement 20 ( Segovia-Juarez et al., 2004 ) 

t moveMa (hours) Time interval for Ma movement 7.8 ( Segovia-Juarez et al., 2004 ) 

t moveMi (hours) Time interval for Mi/Mci movement 24 ( Segovia-Juarez et al., 2004 ) 

Mr recr Probability of Mr recruitment 0.07 ( Cilfone et al., 2013 ) 

T enter Bacteria needed for T cells to enter the system 50 ( Cilfone et al., 2013 ) 

T recr Probability of T cell recruitment 0.02 ( Cilfone et al., 2013 ) 

T life (days) Lifespan of T cells 0–3 ( Sprent, 1993 ) 

T kill Probability of T cell killing Mi/Mci 0.75 ( Cilfone et al., 2013 ) 

t moveT (mins) Time interval for T cell movement 10 ( Segovia-Juarez et al., 2004 ) 

t drug (hours) Time at which drug is administered 168–2160 ( Asefa and Teshome, 2014; Osei et al., 2015 ) 

DrugKill f (%) Drug needed to kill fast-growing bacteria 2 ( Hammond et al., 2015 ) 

DrugKill s (%) Drug needed to kill slow-growing bacteria 10 ( Hammond et al., 2015 ) 

DrugKill Mi (%) Drug needed to kill intracellular bacteria 20 ( Aljayyoussi et al., 2017 ) 

assume a oxygen diffusion length scale of L = 100 μm and a dif- 

fusion constant of D O = 2 × 10 −5 cm 

2 /s ( Owen et al., 2004 ). Us- 

ing these along with the relation L = 

√ 

D/φ, the mean oxygen up- 

take can be approximately estimated as 0.2 s −1 . The oxygen supply 

through the blood vessel is approximately r O = 8 . 2 × 10 −3 mols s −1 

( Matzavinos et al., 2009 ). 

Supply and diffusion rates inside a granuloma are impaired, as 

described in Eqs. (2) , ( 3 ), ( 5 ) and ( 6 ). Parameter values are outlined 

in Table 1 . 

Nondimensionalisation gives T = 0.001 hours and hence each 

time step is set to �t = 0 . 001 h, with one time step corresponding 

to 3.6 s. 

Because oxygen diffusion occurs on a short timescale (of the or- 

der of 10 s), accurately tracking transient variations in oxygen con- 

centration would require a much smaller time step. With M. tu- 

berculosis replication rates of between 15 and 96 h ( Hendon-Dunn 

et al., 2016; Shorten et al., 2013 ), associated timescales are much 

faster and hence we assume a quasi-steady profile for oxygen, with 

the oxygen concentration quickly coming to equilibrium with any 

changes in the microenvironment. 

The simulations are carried out within a two dimensional do- 

main with a grid size N = 100 , which simulates an area of lung tis- 

sue approximately 2 mm × 2 mm . The step size used is based on 

the model proposed and developed in ( Cilfone et al., 2013; Marino 

et al., 2011; Segovia-Juarez et al., 2004 ), with one grid cell corre- 

sponding to the approximate diameter of the biggest discrete ele- 

ment in our system, the macrophage ( Krombach et al., 1997 ). The 

parameters that are used in the equations governing the dynam- 

ics of antibiotics and chemokine molecules are chosen in a similar 

way. 

Oxygen is lighter in comparison to the drugs, with a molecu- 

lar weight of 32 amu ( Hlatky and Alpen, 1985 ), and hence it dif- 

fuses faster than most of the drugs and the chemokine molecules. 

The chemokine molecules diffuse slower than the antibiotics, being 

heavier than most drugs. One of the drugs under the current study, 

rifampicin has a molecular weight of 822.9 amu (PubChem Com- 

pound Database). To obtain or approximate its diffusion coefficient, 

its molecular mass was compared against the molecular masses of 

known compounds, as in ( Powathil et al., 2012 ), and consequently 

taken to be 1.7 ×10 −6 cm 

2 s −1 . Similar analyses are done with iso- 

niazid, pyrazinamide and ethambutol, with parameter values given 

in Table 2 . The decay rate of these drugs are calculated using the 

half life values of the drugs obtained from the literature and are 

also outlined in Table 2 . 

The threshold drug concentrations, DrugKill f , DrugKill s and 

DrugKill Mi , below which the drug has no effect on the TB bac- 

teria have been chosen to be the average density of total drugs 

delivered through the vessels (total drug delivered/total number 

of grid points) and the total drug given is kept the same for all 

drugs types. Values for DrugKill f , DrugKill s and DrugKill Mi are based 

on data arising from in vitro experiments and are reported in 

( Aljayyoussi et al., 2017; Hammond et al., 2015 ). They are given 

in Table 3 . A relative threshold is chosen here in order to compare 

the effects of bacterial cell state and location of bacteria, rather 

than studying any optimisation protocols for drug dosage. As more 

experimental data becomes available, these thresholds can be re- 

fined. Values of 10 −6 cm 

2 s −1 to 10 −7 cm 

2 s −1 have been reported 

as diffusion constants for chemokine molecules ( Francis and Pals- 

son, 1997 ). The half-life for IL-8, an important chemokine involved 

in the immune response of M. tuberculoisis , has been shown to be 

2–4 h ( Walz et al., 1996 ). We use a diffusion rate of 10 −6 cm 

2 s −1 

and a half-life of 2 h in our simulations. 

Other model parameters will be discussed in the next section 

and are summarised in Table 3 . 
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3. Cellular automaton rules 

The entire multiscale model is simulated over a prescribed time 

duration, currently set to 12,0 0 0 h (50 0 days), and a vector con- 

taining all grid cell positions is updated at every time step. The 

oxygen dynamics, chemokine dynamics and drug dynamics are 

simulated using finite difference schemes. 

3.1. Rules for the extracellular bacteria 

A minimal infectious dose of M. tuberculosis has been shown to 

be of the order of 10 ( Capuano et al., 2003 ). For this reason, we be- 

gin our CA simulations with one cluster of 12 bacteria on the grid; 

6 fast-growing bacteria and 6 slow-growing bacteria. These initial 

bacteria replicate following a set of rules and produce a cluster of 

bacteria on a regular square lattice with no-flux boundary condi- 

tions. The fast- and slow-growing bacteria are assigned a replica- 

tion rate; Rep f for the fast-growing and Rep s for the slow-growing. 

When a bacterium is marked for replication, its neighbourhood of 

order 3 is checked for an empty space. The neighbourhood type 

alternates between a Moore neighbourhood and a Von Neumann 

neighbourhood to avoid square/diamond shaped clusters, respec- 

tively. If a space in the neighbourhood exists, a new bacterium is 

placed randomly in one of the available grid cells. If there are no 

spaces in the neighbourhood of order 3, the bacterium is marked 

as ‘resting’. At each time step, the neighbourhood of these ‘resting’ 

bacteria are re-checked so that they can start to replicate again as 

soon as space becomes available. 

As this multiscale model evolves over time, the elements move 

and interact with each other according to the CA model. The bac- 

teria and host cells also influence the spatial distribution of oxy- 

gen since they consume oxygen for their essential metabolic ac- 

tivities. As the bacteria proliferate, the oxygen demand increases 

creating an imbalance between the supply and demand which will 

eventually create a state where the bacteria are deprived of oxy- 

gen. Bacteria can change between fast-growing and slow-growing 

states, depending on the oxygen concentration, scaled from 0 to 

100, at their location. Fast-growing bacteria where the oxygen con- 

centration is below O low 

will become slow-growing, and slow- 

growing bacteria can turn to fast-growing in areas where the oxy- 

gen concentration is above O high (see Table 3 for these values and 

Section 3.5 for more details). 

3.2. Rules for the macrophages 

There are 4 types of macrophage in our system: resting (Mr), 

active (Ma), infected (Mi) and chronically infected (Mci). There are 

Mr init resting macrophages randomly placed on the grid at the start 

of the simulation. These resting macrophages can become active 

when T cells are in their Moore neighbourhood, with probabil- 

ity MrMa multiplied by the number of T cells in the neighbour- 

hood. When active macrophages encounter extracellular bacteria, 

they kill the bacteria. If the resting macrophages encounter bac- 

teria, they become infected and can become chronically infected 

when they phagocytose more than N ici bacteria. Chronically in- 

fected macrophages can only contain N cib intracellular bacteria, af- 

ter which they burst. Bursting macrophages distribute bacteria ran- 

domly into their Moore neighbourhood of order 3 and the grid cell 

where the macrophage was located becomes caseum. 

While the oxygen and antibiotics enter the system via the 

blood vessel network, the chemokines are secreted by the infected, 

chronically infected and activated macrophages. Macrophages 

move in biased random walks, with probabilities calculated as a 

function of the chemokine concentration of its Moore neighbour- 

hood. Resting, infected and chronically infected macrophages are 

randomly assigned a lifespan, M life days, and active macrophages 

live for Ma life days. Resting macrophages move every t moveMr 

minutes, active macrophages move every t moveMa hours and in- 

fected/chronically infected macrophages move every t moveMi hours. 

Resting macrophages are recruited from the blood vessels with a 

probability of Mr recr . 

3.3. Rules for the T cells 

The T cells enter the system once the extracellular bacterial 

load reaches T enter and move in a biased random walk, similar to 

the macrophages. T cells are recruited from the blood vessels with 

a probability T recr . They live for T life , and move every t moveT minutes. 

Activated T cells are immune effector cells that can kill chronically 

infected macrophages. If a T cell encounters an infected or chron- 

ically infected macrophage, it kills the macrophage (and all intra- 

cellular bacteria) with probability T kill and that grid cell becomes 

caseum. T cells also activate resting macrophages when they are in 

their Moore neighbourhood, with probability MrMa multiplied by 

the number of T cells in the neighbourhood. 

3.4. Rules for the antibiotics 

If the immune process does not clear the infection, drugs are 

administered at t drug hours, a randomly chosen time between two 

values (see Table 3 ). This mimics the variability in time that pa- 

tients seek medical attention for their disease ( Asefa and Teshome, 

2014; Osei et al., 2015 ). The antibiotics are administered for a 

period of 4380 h (six months). The antibiotic kills the bacteria 

when the concentration is over DrugKill f or DrugKill s , for the fast- 

and slow-growing bacteria respectively. The antibiotics can also 

kill intracellular bacteria, by killing the bacteria contained within 

the infected/chronically infected macrophages if the concentra- 

tion is over DrugKill Mi . These macrophages then return to resting 

macrophages. 

3.5. Oxygen thresholds for bacterial cell states 

In order to choose values for O low 

and O high , we conducted some 

test simulations for 120 h, where no macrophages were present. 

This allowed us to alter both the oxygen switching thresholds and 

see the effect it had on the bacteria. 90 simulations were run in to- 

tal, with a range of both parameters being tested. Table 4 describes 

the outcome of these simulations: 

Fig. 5 shows representative examples of these test simula- 

tions, where fast- and slow-growing bacteria are shown (by the 

blue/cyan lines, respectively), with O high fixed at 65 and O low 

= 

3 , 6 , 9 . In (a) we see the effect of having a lower threshold for 

fast-growing bacteria to become slow-growing, with O low 

= 3 , in 

(b) O low 

= 6 and in (c), O low 

has a higher threshold of 9. In simu- 

lation (a), the bacteria do not change state during the entire sim- 

ulation, Fig. 5 (a) supports this as we do not see an increase in 

the cyan line that corresponds with a drop in the blue. Simulation 

(b) has O low 

= 6 and here we see some transfer from fast- to slow- 

growing during the 120 h. For simulation (c), however, the fast- 

growing bacteria transfer to slow-growing almost immediately. 

Similarly, Fig. 6 shows representative examples from varying 

O high , where O low 

is held at 6 and O high = 55 , 65 , 75 . In simula- 

tion (a), where O high = 55 , the slow-growing bacteria all change to 

fast-growing very near to the beginning of the simulation. Simula- 

tion (b) shows some bacteria changing state when O high = 65 , and 

simulation (c) shows no transfer from fast- to slow-growing when 

O high = 75 . 

These test simulations support us choosing O low 

= 6 and O high = 

65 . 
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Table 4 

Oxygen switch. 

O low = 3 O low = 6 O low = 9 

O high = 55 All slow-growing bacteria switched to 

fast-growing in all 10 simulations by 

t = 10 h 

In 9 of the 10 simulations, all slow-growing 

bacteria changed to fast-growing by t = 10 h 

In all 10 simulations, bacteria was all the same cell 

state by t = 10 h: In 4 simulations all were 

slow-growing, in 6 simulations all were 

fast-growing 

O high = 65 No bacteria change state in any of the 

10 simulations 

In 7 of the simulations, some bacteria changed 

state: 4 from fast-growing to slow-growing and 3 

from slow-growing to fast-growing (mean time 

for first switch was t = 21 h). In 3 of the 

simulations, no bacteria changed state. 

All fast-growing bacteria become slow-growing by 

t = 10 h in all 10 simulations 

O high = 75 No bacteria change state in any of the 

10 simulations 

No bacteria changed state in any of the 10 

simulations 

All fast-growing bacteria become slow-growing by 

t = 10 hours in all 10 simulations 

Fig. 5. Plots of the fast- (blue) and slow-growing (cyan) extracellular bacteria for the first 120 h, with O high fixed at 65 and (a) O low = 3 , (b) O low = 6 and (c) O low = 9 . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Plots of the fast- (blue) and slow-growing (cyan) extracellular bacteria for the first 120 h, with O low fixed at 6 and (a) O high = 55 , (b) O high = 65 and (c) O high = 75 . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

4. Simulation results 

In order to study the relative importance of bacterial cell state 

and initial spatial location of bacteria, we study two scenarios: one 

with a fixed, uniform blood vessel distribution and initial bacterial 

locations (see four examples in Fig. 7 (a)), and another where the 

vessel distribution and the initial locations of the extracellular bac- 

teria are determined randomly for each simulation (see examples 

in Figs. 9 –11 (a)). We run a total of 120 simulations for 500 days: 

20 simulations for the ‘fixed’ scenario and 100 simulations for the 

‘random’ scenario. These simulations were run on servers that have 

dual Intel Xeon E5-2640 CPUs and 128GB RAM. Each simulation 

took approximately 8 hours to run. 

4.1. Fixed blood vessels and initial bacterial cluster 

20 simulations were run with the same initial distribution of 

N v blood vessels and with one bacterial cluster of 6 fast-growing 

bacteria and 6 slow-growing bacteria, located in the centre of the 

grid. Fig. 7 shows this initial set up. In this ‘fixed’ spatial config- 

uration, there was 1 blood vessel located within a 0.1 mm radius 

of the bacterial cluster, situated 1 grid cell away (0.02 mm). All 20 

simulations resulted in containment of the disease (which we de- 

fine as fewer than 10 extracellular bacteria at the end of the 500 

days), with the macrophages and T cells preventing disease pro- 

gression. In all 20 simulations no bacteria remained at the end of 

the 500 days. As a granuloma develops in the simulations, caseous 

cells are created at the centre. At 500 days, the simulations had 

a range of 11–49 caseous grid cells with a median value of 13.5. 

In only one simulation the total bacterial load exceeded T enter and 

therefore T cells only appeared in one simulation. See Table 1 in 

supplementary material for summary statistics for these 20 sim- 

ulations. Supplementary material also contains a document with 

plots showing the dynamics of the T cells. 

As can be seen in Fig. 7 (i)(b), at the end of this fixed simulation, 

there are 10 caseous grid cells remaining, with all bacteria eradi- 



94 R. Bowness et al. / Journal of Theoretical Biology 446 (2018) 87–100 

Fig. 7. Plots showing the outcome of two representative simulations, (i)–(ii), with the fixed vessel distribution and initial bacterial location. (a) and (b) are plots of the spatial 

distribution of all elements: At the start of the simulation, with the initial bacterial cluster highlighted by the black circle (a) and at the end of the simulation (b). Red circles 

depict the blood vessels, black circles depict the caseum, blue circles show the fast-growing extracellular bacteria, cyan circles show the slow-growing extracellular bacteria, 

green dots depict macrophages (with darker green for the infected/chronically infected macrophages) and yellow dots depict the T cells. Plots of bacterial numbers are shown 

in (c), depicting fast-growing extracellular bacteria (dark blue), slow-growing extracellular bacteria (cyan) and intracellular bacteria (green). Note that individual figures are 

available in Supplementary material for closer inspection. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

cated. In the line plot, Fig. 7 (i)(c), we see that the macrophages 

effectively phagocytose the bacteria early on in the simulation and 

the infected macrophages gradually die out over 2500 h (around 

100 days). In the model, as a macrophage reaches the end of its 

lifespan, the grid cell becomes caseum and the intracellular bacte- 

ria contained within is able to burst out and grow extracellularly. 

This can only happen, however, if there is space for the bacterium 

to move to. If instead, as in this case, the immune response is 

effective in controlling the disease with resting macrophages sur- 

rounding the infection, there is no space for these intracellular bac- 

teria to re-emerge as extracellular bacteria, and the bacterium dies. 

Fig. 7 (ii) depicts the outcome of another example simulation 

with a starting ‘fixed’ distribution. Fig. 7 (ii)(b) shows the end of 

this simulation with 49 caseous grid cells. If we look at the line 

plot in Fig. 7 (ii)(c), we can see a more eventful simulation. The 

bacteria start to grow at the beginning of the simulation and we 

see a more gradual immune containment of the infection. This 

is the one simulation where T cells entered the system to assist 

in this containment. Because of this, the T cells are also respon- 

sible for killing infected macrophages and they also activate the 

macrophages, which also contribute to the killing of the infected 

macrophages. In Fig. 7 (ii)(c) we also see incidences of intracellular 

bacteria successfully moving out of the macrophages as they die 

naturally. These can be seen as small spikes in the slow-growing 

line. In many of these cases, however, these newly escaped ex- 

tracellular bacteria are quickly phagocytosed again. Eventually, by 

around 3700 h (around 150 days), this infection is completely erad- 

icated. 

Fig. 8 shows summary plots of the 20 fixed simulations, with 

the mean bacterial numbers shown by the solid lines and 95% con- 

fidence intervals shown by the dashed lines. Fig. 8 (i) shows the 

entire 12,0 0 0 h and Fig. 8 (ii) shows only until 200 h, as this is 

where most activity takes place. We can see from these plots that 

there is not a great amount of variation between the 20 simula- 

tions, with small differences in bacterial numbers. It is clear also 

that most of the variability takes place close to the start of the 

simulations. This confirms our conclusions that with a fixed dis- 

tribution of blood vessels and initial bacterial placement, there is 

very little difference in the outcome by the end of the simulations. 

4.2. Random blood vessels and initial bacterial cluster 

100 simulations were run with a random distribution of blood 

vessels and a random location for a bacterial cluster. The bacterial 

cluster consisted of 6 fast-growing bacteria and 6 slow-growing 

bacteria, as in the fixed scenario. 90 simulations resulted in con- 

tainment of the disease. Again we define containment as fewer 

than 10 extracellular bacteria at the end of the 500 days. Ten sim- 

ulations had a number of slow-growing bacteria remaining at 500 

days, with a range 1–6. All of these remaining extracellular bac- 

teria were surrounded by caseous grid cells. The other 80 simu- 

lations had no extracellular bacteria remaining. 29 out of the 90 

simulations had intercellular bacteria, with a range 1–41. Of these 

90 ‘contained’ simulations, 32 still had a small number of either 

extracellular or intracellular bacteria remaining at the end of the 

simulation (but fewer than ten extracellular bacteria) and hence 

these would be termed ‘latently infected’, where the disease is ca- 

pable of progressing at a later stage. Fig. 9 shows four representa- 

tive examples of these 90 simulations that were contained. 
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Fig. 8. Summary plots of all 20 fixed simulations. The solid line represents the mean bacterial numbers and the dashed lines show the 95% confidence intervals. (i) shows 

the bacterial numbers for the entire 12,0 0 0 hours, whereas (ii) shows until time 200 hours, where most activity takes place. The fast-growing bacteria are shown by the 

blue lines in (a), the slow-growing bacteria are shown by the cyan lines in (b) and the intracellular bacteria by the green lines in (c). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

In Fig. 9 (i)(b), we see an example of a simulation where the 

infection has been contained, with no extracellular bacteria and 

only 11 intracellular bacteria remaining. There is also a granu- 

loma visible at 500 days, containing 102 caseous grid cells. The 

line plot shown in Fig. 9 (i) (c) describes how the immune sys- 

tem has contained this infection. In the 500 days of the simula- 

tion, we see numerous spikes in the extracellular bacteria, as in- 

fected macrophages die and the intracellular bacteria are released. 

In most circumstances, this re-emergent infection is quickly con- 

trolled. At roughly 90 0 0 h, however, the slow-growing bacteria be- 

gin to grow again. It is at this point in the simulation that T cells 

are recruited, which helps to regain control of the infection. 

Fig. 9 (ii) shows another example of a contained infection, where 

no treatment was needed. In this simulation, there are 6 extracel- 

lular bacteria remaining at the end of the 500 days. However, as 

these are surrounded by caseous material within the granuloma 

structure, the infection is controlled and the bacteria cannot grow. 

In Fig. 9 (iii), we see a similar picture to that of shown in 

Fig. 9 (i). The difference here is that there was no T cell recruit- 

ment needed to control the infection. By the end of the simula- 

tion, we see in Fig. 9 (iii)(c) that there are 16 intracellular bacteria 

remaining. 

Fig. 9 (iv) depicts a situation where the infection is controlled 

efficiently by the host immunity. Fig. 9 (iv)(b) shows no bacteria 

remaining with only 12 caseous grid cells. 

In 10 simulations, the immune response was not able to con- 

tain the disease within the granuloma and active disease devel- 

oped. Antibiotics were then administered at t drug hours. In seven of 

these simulations, the treatment was ‘successful’, where we define 

success as fewer than ten extracellular bacteria at the end of 500 

days. Four of these simulations had between 1 and 8 slow-growing 

extracellular bacteria remaining at 500 days. These extracellular 

bacteria were all surrounded by caseous grid cells. Although these 

four simulations are deemed ‘successful’, as there are a small num- 

ber of bacteria remaining, these cases are capable of relapsing. In 

the seven successful simulations, the majority of the bacteria are 

killed by the antibiotics (mean value of 75.1%). Four representative 

examples of these ‘successfully treated cases’ are shown in Fig. 10 . 

Fig. 10 (i) shows an example of a successfully treated simulation. 

Both types of extracellular bacteria grow rapidly at the start of the 

simulation, with the immune cells unable to control the infection. 

As the bacteria grow, they start to consume more and more oxy- 

gen, reducing the availability and causing the fast-growing bacteria 

to switch state. We see the clear effects of the antibiotics as they 

enter the system at 535 hours, with 85.8% of the total bacteria in 

the system being killed by the antibiotics at this time. No bacteria 

remain at the end of this simulation. 

Fig. 10 (ii) shows another example of a successfully treated sim- 

ulation. Again, we see the sharp reduction of bacterial load as the 

antibiotics enter the system at 708 h, with 80.6% of the total bacte- 

ria in the system being killed by the antibiotics. Shortly after this, 

the host immunity controls the remaining infection. Only 1 slow- 

growing bacteria remains at the end of the simulation, surrounded 

by casous grid cells. 

In Fig. 10 (iii), antibiotics were administered at 215 h, which we 

see in Fig. 10 (iii)(d) controls the infection, killing 88.9% of the total 

bacteria. 

Fig. 10 (iv) shows an example where, although the antibiotics 

were used and were effective, the immune response was actually 

responsible for the majority of the killing (63.5%). This is in part 

due to that fact that antibiotics were given early, at 249 h when 

the bacterial burden was not particularly high. 

The remaining three simulations, were deemed ‘unsuccessful’. 

In these simulations there were 16, 241 and 354 slow-growing bac- 

teria remaining at 500 days. The latter two simulations are shown 

in Fig. 11 . 

Fig. 11 (i) shows a case where the infection was controlled by 

the host immunity for almost the entire simulation. Near the end 

of the 500 days, however, the intracellular bacteria escape as the 

macrophages reach the end of their lives and these newly extracel- 

lular bacteria grow. This is an example of a ‘latent’ case of tuber- 

culosis where the infection reactivates at a later date. 
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Fig. 9. Plots showing the outcome of four representative simulations, (i)–(iv), of contained simulations, with a randomly placed vessel distribution and initial bacterial 

location. (a)–(b) are plots of the spatial distribution of all elements: at the start of the simulation, with the initial bacterial cluster highlighted by the black circle (a) and 

at the end of the simulation (b). Red circles depict the blood vessels, black circles depict the caseum, blue circles show the fast-growing extracellular bacteria, cyan circles 

show the slow-growing extracellular bacteria, green dots depict macrophages (with darker green for the infected/chronically infected macrophages) and yellow dots depict 

the T cells. Plots of bacterial numbers are shown in (d), depicting fast-growing extracellular bacteria (dark blue), slow-growing extracellular bacteria (cyan) and intracellular 

bacteria (green). Note that individual figures are available in Supplementary material for closer inspection. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Finally, Fig. 11 (ii) shows an example of a simulation where 

treatment was received and was initially ‘successful’ but, as it can 

be seen in Fig. 11 (ii)(d), at around 80 0 0 h, extracellular bacteria 

begin to grow as dying macrophages release their intracellular bac- 

teria. The slow-growing bacteria then continue to grow until the 

end of the simulation. This is an example of a relapse. 

Fig. 12 shows summary plots of the 100 random simulations, 

with the mean bacterial numbers shown by the solid lines and 95% 

confidence intervals shown by the dashed lines. Fig. 12 (i) shows 

the entire 12,0 0 0 h and Fig. 12 (ii) shows only until 200 hours, 

as this is where most activity takes place. In contrast to the fixed 

summary plots, we see much more variation in bacterial numbers, 

especially for the slow-growing bacteria. We also note that this 

variability remains for the entire 12,0 0 0 h. This further highlights 

the increased variability in outcome when we investigate a random 

placement of blood vessels and bacterial cluster. 

Table 2 in supplementary material shows summary statistics for 

these 100 random simulations. Supplementary material also con- 

tains a document with plots of the dynamics of the T cells. 

In the 90 ‘contained’ simulations, the median distance of ini- 

tial bacterial cluster to nearest blood vessel source is 0.1 mm, with 

a median value of 1 blood vessel source within a 0.1 mm radius 

of the bacteria. In contrast, the other 10 simulations which were 

not contained by host immunity, the median distance to the clos- 

est blood vessel source is 0.16 mm, with a median value of 0 blood 

vessel sources within a 0.1 mm radius of the bacteria. Comparing 

the contained cases with the treated cases, a 1-tailed student t -test 

gives a p value of p = 0 . 014 for proximity to closest blood vessel 
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Fig. 10. Plots showing the outcome of four representative simulations, (i)–(iv), which were ‘successfully treated’, with a randomly placed vessel distribution and initial 

bacterial location. (a)–(c) are plots of the spatial distribution of all elements: at the start of the simulation, with the initial bacterial cluster highlighted by the black circle 

(a), just before the drug enters the system (b) and at the end of the simulation (c). Red circles depict the blood vessels, black circles depict the caseum, blue circles show the 

fast-growing extracellular bacteria, cyan circles show the slow-growing extracellular bacteria, green dots depict macrophages (with darker green for the infected/chronically 

infected macrophages) and yellow dots depict the T cells. Plots of bacterial numbers are shown in (d), depicting fast-growing extracellular bacteria (dark blue), slow-growing 

extracellular bacteria (cyan) and intracellular bacteria (green). Note that individual figures are available in Supplementary material for closer inspection. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

and p = 4 . 6 × 10 −5 for number of blood vessels within a 0.1 mm 

radius. Hence we have shown that these groups are statistically 

different at the 5% level. This seems to suggest that, if the initial 

bacteria are located further away from the blood vessels, the less 

likely it is that the host immune response will contain the infec- 

tion. 

5. Discussion 

Individual-based models have already been shown to be useful 

in understanding tuberculosis disease progression ( Cilfone et al., 

2013; Marino et al., 2011; Pienaar et al., 2015; 2016; Segovia-Juarez 

et al., 2004; Sershen et al., 2016 ). Here we have built a hybrid cel- 

lular automaton model that incorporates oxygen dynamics, which 

allows bacteria to change state, and includes antibiotic treatments. 

In addition to focusing on bacterial cell state, we also investigate 

changes in spatial location of the bacteria and their influences on 

disease outcome. 

We have shown that position of bacteria in relation to the 

source of drugs alters the outcome of simulations. When analysing 

the 20 simulations with a fixed, uniform blood vessel distribution, 

we see that there is very little difference between the simulations, 

with the host immunity containing the infection in all 20 cases. 

For the random distribution of blood vessels, the location of the 

bacterial cluster was an important factor in determining disease 

outcome. In the simulations where treatment was necessary, the 

initial bacteria were usually further away from the blood vessel 

sources than those that were contained by the immune response. 

The blood vessels act as sources for the immune cells and so when 

the bacteria are located further away from these sources, it can 
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Fig. 11. Plots showing the outcome of two representative simulations, (i)–(ii), which were ‘unsuccessfully treated’, with a randomly placed vessel distribution and initial 

bacterial location. (a)–(c) are plots of the spatial distribution of all elements: at the start of the simulation, with the initial bacterial cluster highlighted by the black circle 

(a), just before the drug enters the system (b) and at the end of the simulation (c). Red circles depict the blood vessels, black circles depict the caseum, blue circles show the 

fast-growing extracellular bacteria, cyan circles show the slow-growing extracellular bacteria, green dots depict macrophages (with darker green for the infected/chronically 

infected macrophages) and yellow dots depict the T cells. Plots of bacterial numbers are shown in (d), depicting fast-growing extracellular bacteria (dark blue), slow-growing 

extracellular bacteria (cyan) and intracellular bacteria (green). Note that individual figures are available in Supplementary material for closer inspection. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Summary plots of all 100 random simulations. The solid line represents the mean bacterial numbers and the dashed lines show the 95% confidence intervals. (i) 

shows the bacterial numbers for the entire 12,0 0 0 h, whereas (ii) shows until time 200 h, where most activity takes place. The fast-growing bacteria are shown by the blue 

lines in (a), the slow-growing bacteria are shown by the cyan lines in (b) and the intracellular bacteria by the green lines in (c). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

take a longer time for the immune cells to respond to and attempt 

to control the infection. This extra time can give the bacteria time 

to grow, making it harder for the host immunity to contain the 

disease, thus in the majority of cases, antibiotics are required to 

reduce the bacterial burden. We also note that in many of the 

simulations where the initial bacterial cluster is located near the 

edge of the computational domain (examples shown in Fig. 10 ), 

the host immune response tends to find it harder to contain the 

infection. This is because the host cells cannot surround the bacte- 

ria and therefore a complete granuloma cannot develop. Although 
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this is a flaw in the model design, it does illustrate the importance 

of effective granuloma formation. In future iterations of the model 

we could consider a larger domain or look at alternative boundary 

conditions to compare the effect. 

In the 100 simulations that used a random distribution of blood 

vessels and bacteria, we found that 90 (90%) of them were con- 

tained by the host immunity but 32 of these (36%) still had some 

bacteria remaining, and are therefore latently infected, their dis- 

ease capable of reactivating at a later date. 10 of the 100 simula- 

tions (10%) required treatment and 7 of these (70%) had favourable 

outcomes, with fewer than ten extracellular bacteria remaining at 

the end of 500 days. The remaining three simulations had more 

than ten extracellular bacteria remaining at the end of the simu- 

lation. Two of these cases were treated with antibiotics, which re- 

duced the bacterial load dramatically. In one case, only 16 bacteria 

were remaining and these bacteria were situated within a gran- 

uloma. The other case depicts a relapse, where treatment was ini- 

tially successful but infection started to grow again post treatment. 

The last case is an example of a latently infected individual whose 

disease reactivates just before the end of the simulation. These per- 

centages are comparable with those described in Fig. 1 and from 

epidemiological data from the WHO on the rates of latent TB dis- 

ease (World Health Organisation, 2013), with 90% of the cases re- 

sulting in containment of the disease but with many capable of 

later relapse. We also show a case where an early clearance of 

the bacterial load still ended up with relapse of the disease, this 

is consistent with observations from the REMoxTB trial, reported 

in ( Phillips et al., 2016 ). Our model simulations also show that in 

the cases where bacteria remain at the end of the simulation, they 

are slow-growing. This finding of persistent bacteria is also consis- 

tent with the literature describing persistent TB infection in in vivo 

models ( Hu et al., 20 0 0; Manina et al., 2015 ). 

An important feature of our model is that of caseation: 

when infected macrophages burst or die, or T cells kill in- 

fected macrophages, that grid cell becomes caseum. Hence, as 

macrophages move chemotactically towards the clusters of bacte- 

ria, a caseous granuloma starts to form and this caseum inhibits 

drug diffusion. We have shown that in simulations where bacte- 

ria are surrounded by caseum, they often remain at the end of the 

simulation. This emphasises the importance of caseous necrosis on 

the outcome of therapy. The implications of caseum have already 

been demonstrated ( Grosset, 1980 ) and our simulations confirm 

the importance of this type of necrotic breakdown. Other hybrid 

models, such as ( Pienaar et al., 2015 ), have also included caseum, 

with non-replicating bacteria residing in the necrotic tissue and 

also call attention to this important feature in terms of treatment 

outcome. With recent experimental studies such as ( Sarathy et al., 

2018 ), we now have the available data to explore the drug suscep- 

tibility of bacteria in caseum. 

We have also shown that bacterial cell state has an impact 

on simulations, which is a characteristic that is only just start- 

ing to be understood. All simulations that have extracellular bac- 

teria remaining at the end of 500 days are slow-growing bacte- 

ria. This is in part because any treatment received tends to kill 

off the faster-growing bacteria more quickly, perhaps leaving be- 

hind a slower-growing population. These bacteria are also often 

located inside a granuloma, where the oxygen supply and diffu- 

sion rate is impaired, which favours slower-growing phenotypes. 

There are relatively few publications that define the susceptibility 

of slow-growing mycobacteria in relation to the standard or new 

anti-tuberculosis drugs and particular emphasis should be placed 

on such antibiotics that can penetrate well into lesions. 

Our preliminary simulations also highlight the importance of 

spatial location of the bacteria. Perhaps it is thought obvious that 

spatial location of the bacteria is a key factor in treatment out- 

come but previous mathematical models to date have not identi- 

fied this fact. Studies have focused on pharmacokinetic (PK) based 

on serum and simulations of epithelial lining fluid (ELF) bron- 

choalveolar lavage. Our modelling has shown that anatomical con- 

siderations are important when chronic infection creates an anaer- 

obic environment and fibrosis around cavities. Treatment is com- 

pounded further by bacterial cell state, which increases functional 

MIC of bacteria that can be more difficult to kill due to poor pen- 

etration. 

Future models could address this with enhanced understand- 

ing of the effect of dormancy or phenotypic resistance. This indi- 

cates the importance of work to define lesional PK ( Prideaux et al., 

2015; Via et al., 2015 ). In future iterations of the model will also 

include more anatomical and immunological complexity, for ex- 

ample, airways will be added to the domain to explore its effects 

and more than one T cell will be integrated into the model. We 

could also explore the effect of fibrosis and cavity formation on 

outcome, building on recent concepts on lesional drug concentra- 

tions ( Prideaux et al., 2015; Via et al., 2015 ). In addition, we will 

model liquefaction, which will be important to allow the release 

of ‘trapped’ bacteria, thus allowing us to further investigate relapse 

cases. As our understanding of M. tuberculosis cell state increases 

we will also be able to refine our parameter estimates of this char- 

acteristic and build a better model. In future models we will also 

investigate the effect of allowing more than one element to occupy 

each grid cell. In this model the simple drug diffusion that is mod- 

elled is sufficient for our initial investigations. In future models we 

will integrate a PK/PD treatment model for combination therapy so 

that we can investigate the relative importance of front-line drugs 

and their role in targeting the various bacteria. 

Sputum culture conversion during treatment for tuberculosis 

has a limited role in predicting the outcome of treatment for in- 

dividual patients ( Phillips et al., 2016 ), so spatial models that ex- 

plore TB infection and treatment in the lung are needed if we are 

to increase our understanding of patient outcome. In this work we 

have shown, using an individual-based model, that a spatial model 

allows us to explore many unanswered questions in TB. 
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