25 research outputs found

    Differences in clinical aspects of human cystic echinococcosis caused by Echinococcus granulosus sensu stricto and the G6 genotype in Neuquén, Argentina

    Get PDF
    Most human cystic echinococcosis (CE) cases worldwide are attributed to Echinococcus granulosus sensu stricto (s.s), followed by the G6 and G7 genotypes. While E. granulosus s.s. has a cosmopolitan distribution, the G6 genotype is restricted to areas where camels and goats are present. Goats are the primary livestock in the Neuquén province in Argentina where the G6 genotype has been reported to be responsible for a significant percentage of CE human cysts genotyped. In the present study, we genotyped 124 Echinococcus cysts infecting 90 CE-confirmed patients. Echinococcus granulosus s.s. was identified in 51 patients (56.7%) with 81 cysts and the G6 genotype in 39 patients (43.3%) harbouring 43 cysts. Most CE cases ≤18 years were male suggesting pastoral work could be a risk factor for the infection. Echinococcus granulosus s.s. was significantly found more frequently in the liver (32/51 patients) and the G6 genotype in the lungs and extrahepatic localizations (27/39). The patients infected with E. granulosus s.s., presented up to 6 cysts while patients infected with G6 presented a maximum of 2. The diameter of lung cysts attributed to E. granulosus s.s. was significantly larger compared to lung cysts from G6. Following the WHO ultrasound classification of liver cysts, we observed inactive cysts in 55.6% of G6 cysts and only 15.3% of E. granulosus s.s cysts. In conclusion, we provide evidence of differences in clinical aspects of CE caused by E. granulosus s.s. and the G6 genotype of E. granulosus s.l. complex infecting humans

    Development of an immunoassay for the simultaneous detection of GADA and ZnT8A in autoimmune diabetes using a ZnT8/GAD65 chimeric molecule

    Get PDF
    IntroductionThe combined presence of autoantibodies to the 65 kDa isoform of glutamic acid decarboxylase (GADA) and to the islet-specific cation efflux transporter ZnT8 (ZnT8A) in serum is the best predictive sign of the loss of immune tolerance and the clinical manifestation of autoimmune diabetes mellitus (DM). The screening of GADA and ZnT8A could help to reach to a correct diagnosis and to start an early and adequate treatment. The aim of the study was to develop an immunoassay for the simultaneous detection of these autoantibodies using a chimera molecule that includes the immunodominant regions of ZnT8 and GAD65, expressed by baculovirus-insect cells system.Materials and MethodsZnT8/GAD65 was expressed using the Bac to Bac™ baculovirus expression system. The recombinant chimera was purified by an His6-tag and identified by SDS-PAGE and western blot analysis, and by an indirect ELISA using specific antibodies against ZnT8 and GAD65. A fraction of ZnT8/GAD65 was biotinylated. A bridge ELISA (b-ELISA) was developed using ZnT8/GAD65 immobilized in polystyrene microplates, human sera samples from healthy individuals (n = 51) and diabetic patients (n = 49) were then incubated, and afterwards ZnT8/GAD65-biotin was added. Immune complexes were revealed with Streptavidin-Horseradish Peroxidase. Results were calculated as specific absorbance and expressed as standard deviation scores: SDs.ResultsZnT8/GAD65 was efficiently produced, yielding 30 mg/L culture medium, 80% pure. This recombinant chimera retains the immunoreactive conformation of the epitopes that are recognized by their specific antibodies, so it was used for the development of a high sensitivity (75.51%) and specificity (98.04%) b-ELISA for the detection of ZnT8A and/or GADA, in a one-step screening assay. The ROC curves demonstrated that this method had high accuracy to distinguish between samples from healthy individuals and diabetic patients (AUC = 0.9488); the cut-off value was stablished at 2 SDs.ConclusionsThis immunoassay is useful either to confirm autoimmune diabetes or for detection in routine screening of individuals at risk of autoimmune DM. As DM is a slow progress disease, remaining asymptomatic for a long preclinical period, serological testing is of importance to establish a preventive treatment

    Differences in clinical aspects of human cystic echinococcosis caused by Echinococcus granulosus sensu stricto and the G6 genotype in Neuquén, Argentina

    Get PDF
    Most human cystic echinococcosis (CE) cases worldwide are attributed to Echinococcus granulosus sensu stricto (s.s), followed by the G6 and G7 genotypes. While E. granulosus s.s. has a cosmopolitan distribution, the G6 genotype is restricted to areas where camels and goats are present. Goats are the primary livestock in the Neuquén province in Argentina where the G6 genotype has been reported to be responsible for a significant percentage of CE human cysts genotyped. In the present study, we genotyped 124 Echinococcus cysts infecting 90 CE-confirmed patients. Echinococcus granulosus s.s. was identified in 51 patients (56.7%) with 81 cysts and the G6 genotype in 39 patients (43.3%) harbouring 43 cysts. Most CE cases ≤18 years were male suggesting pastoral work could be a risk factor for the infection. Echinococcus granulosus s.s. was significantly found more frequently in the liver (32/51 patients) and the G6 genotype in the lungs and extrahepatic localizations (27/39). The patients infected with E. granulosus s.s., presented up to 6 cysts while patients infected with G6 presented a maximum of 2. The diameter of lung cysts attributed to E. granulosus s.s. was significantly larger compared to lung cysts from G6. Following the WHO ultrasound classification of liver cysts, we observed inactive cysts in 55.6% of G6 cysts and only 15.3% of E. granulosus s.s cysts. In conclusion, we provide evidence of differences in clinical aspects of CE caused by E. granulosus s.s. and the G6 genotype of E. granulosus s.l. complex infecting humans

    Rapid and cost-effective process based on insect larvae for scale-up production of SARS-COV-2 spike protein for serological COVID-19 testing

    Get PDF
    Serology testing for COVID-19 is important in evaluating active immune response against SARS-CoV-2, studying the antibody kinetics, and monitoring reinfections with genetic variants and new virus strains, in particular, the duration of antibodies in virus-exposed individuals and vaccine-mediated immunity. In this work, recombinant S protein of SARS-CoV-2 was expressed in Rachiplusia nu, an important agronomic plague. One gram of insect larvae produces an amount of S protein sufficient for 150 determinations in the ELISA method herein developed. We established a rapid production process for SARS-CoV-2 S protein that showed immunoreactivity for anti-SARS-CoV-2 antibodies and was used as a single antigen for developing the ELISA method with high sensitivity (96.2%) and specificity (98.8%). Our findings provide an efficient and cost-effective platform for large-scale S protein production, and the scale-up is linear, thus avoiding the use of complex equipment like bioreactors.Fil: Smith, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Mc Callum, Gregorio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Sabljic, Adriana Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Marfía, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Bombicino, Silvina Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Trabucchi, Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Iacono, Ruben Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Birenbaum, Joaquín Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Vázquez, Susana Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Minoia, Juan Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Cascone, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina. Ministerio de Salud de la Nación. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud "Doctor Carlos G. Malbrán". Instituto Nacional de Producción de Biológicos; ArgentinaFil: López, María Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Taboga, Oscar Alberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Targovnik, Alexandra Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Wolman, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Fingermann, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Salud de la Nación. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud "Doctor Carlos G. Malbrán". Instituto Nacional de Producción de Biológicos; ArgentinaFil: Alonso, Leonardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Valdez, Silvina Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Estudios de la Inmunidad Humoral Prof. Ricardo A. Margni; ArgentinaFil: Miranda, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentin

    RBD-specific polyclonal F(ab´)2 fragments of equine antibodies in patients with moderate to severe COVID-19 disease: A randomized, multicenter, double-blind, placebo-controlled, adaptive phase 2/3 clinical trial

    Get PDF
    Background: passive immunotherapy is a therapeutic alternative for patients with COVID-19. Equine polyclonal antibodies (EpAbs) could represent a source of scalable neutralizing antibodies against SARS-CoV-2. Methods: we conducted a double-blind, randomized, placebo-controlled trial to assess efficacy and safety of EpAbs (INM005) in hospitalized adult patients with moderate and severe COVID-19 pneumonia in 19 hospitals of Argentina. Primary endpoint was improvement in at least two categories in WHO ordinal clinical scale at day 28 or hospital discharge (ClinicalTrials.gov number NCT04494984). Findings: between August 1st and October 26th, 2020, a total of 245 patients were enrolled. Enrolled patients were assigned to receive two blinded doses of INM005 (n = 118) or placebo (n = 123). Median age was 54 years old, 65 1% were male and 61% had moderate disease at baseline. Median time from symptoms onset to study treatment was 6 days (interquartile range 5 to 8). No statistically significant difference was noted between study groups on primary endpoint (risk difference [95% IC]: 5 28% [-3 95; 14 50]; p = 0 15). Rate of improvement in at least two categories was statistically significantly higher for INM005 at days 14 and 21 of follow-up. Time to improvement in two ordinal categories or hospital discharge was 14 2 (§ 0 7) days in the INM005 group and 16 3 (§ 0 7) days in the placebo group, hazard ratio 1 31 (95% CI 1 0 to 1 74). Subgroup analyses showed a beneficial effect of INM005 over severe patients and in those with negative baseline antibodies. Overall mortality was 6 9% the INM005 group and 11 4% in the placebo group (risk difference [95% IC]: 0 57 [0 24 to 1 37]). Adverse events of special interest were mild or moderate; no anaphylaxis was reported. Interpretation: Albeit not having reached the primary endpoint, we found clinical improvement of hospitalized patients with SARS-CoV-2 pneumonia, particularly those with severe disease.Fil: Lopardo, Gustavo. Municipalidad de Vicente Lopez (buenos Aires). Hospital Municipal Doctor Bernardo Houssay.; ArgentinaFil: Belloso, Waldo H.. Hospital Italiano; ArgentinaFil: Nannini, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Colonna, Mariana. Inmunova; ArgentinaFil: Sanguineti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Inmunova; ArgentinaFil: Zylberman, Vanesa. Inmunova; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muñoz, Luciana. Inmunova; ArgentinaFil: Dobarro, Martín. Sanatorio Sagrado Corazón; ArgentinaFil: Lebersztein, Gabriel. Sanatorio Sagrado Corazón; ArgentinaFil: Farina, Javier. Gobierno de la Provincia de Buenos Aires. Hospital de Alta Complejidad Cuenca Alta Doctor Nestor Carlos Kirchner.; ArgentinaFil: Vidiella, Gabriela. Sanatorio Agote. Dr. Luis Agote; ArgentinaFil: Bertetti, Anselmo. Sanatorio Guemes Sociedad Anonima.; ArgentinaFil: Crudo, Favio. Universidad Nacional de San Antonio de Areco; ArgentinaFil: Alzogaray, Maria Fernanda. Instituto Medico Platense.; ArgentinaFil: Barcelona, Laura. Municipalidad de Vicente Lopez (buenos Aires). Hospital Municipal Doctor Bernardo Houssay.; ArgentinaFil: Teijeiro, Ricardo. Gobierno de la Ciudad Autónoma de Buenos Aires. Hospital General de Agudos Doctor Ignacio Pirovano; ArgentinaFil: Lambert, Sandra. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic; ArgentinaFil: Scublinsky, Darío. Clinica Zabala.; ArgentinaFil: Iacono, Marisa. Provincia del Neuquen. Hospital Provincial Neuquen "dr. E. Castro Rendon"; ArgentinaFil: Stanek, Vanina. Hospital Italiano; ArgentinaFil: Solari, Rubén. Gobierno de la Ciudad de Buenos Aires. Hospital de Infecciosas "Dr. Francisco Javier Muñiz"; ArgentinaFil: Cruz, Pablo. No especifíca;Fil: Casas, Marcelo Martín. Clinica Adventista Belgrano; ArgentinaFil: Abusamra, Lorena. Hospital Municipal Dr. Diego Thompson; ArgentinaFil: Luciardi, Héctor Lucas. Provincia de Tucuman. Ministerio de Salud. Sistema Provincial de Salud. Hosp. Centro de Salud "zenon Santillan"; ArgentinaFil: Cremona, Alberto. Hospital Italiano de La Plata; ArgentinaFil: Caruso, Diego. Hospital Español; ArgentinaFil: de Miguel, Bernardo. No especifíca;Fil: Perez Lloret, Santiago. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Universidad Abierta Interamericana. Secretaría de Investigación. Centro de Altos Estudios En Ciencias Humanas y de la Salud - Sede Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Millán, Susana. No especifíca;Fil: Kilstein, Yael. No especifíca;Fil: Pereiro, Ana. Fundación Mundo Sano; ArgentinaFil: Sued, Omar. Fundación Huésped; ArgentinaFil: Cahn, Pedro. Fundación Huésped; ArgentinaFil: Spatz, Linus. Inmunova; ArgentinaFil: Goldbaum, Fernando Alberto. Inmunova; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de San Martin. Centro de Rediseño E Ingenieria de Proteinas.; Argentin

    Sp6 and Sp8 transcription factors control AER formation and dorsal-ventral patterning in limb development

    Get PDF
    The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6-/-;Sp8+/-) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning

    Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    Get PDF
    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.</p

    Clusters of Hantavirus Infection, Southern Argentina

    No full text
    Fil: Lazaro, María Ester. Hospital Zonal Bariloche; Rio Negro, Argentina.Fil: Cantoni, Gustavo. Unidad Regional de Epidemiología y Salud Ambienta; Rio Negro, Argentina.Fil: Calanni, Liliana. Hospital Castro Rendón; Neuquén, Argentina.Fil: Resa, Amanda J. Hospital de área El Bolsón; Rio Negro, Argentina.Fil: Herrero, Eduardo. Unidad Regional de Epidemiología y Salud Ambienta; Rio Negro, Argentina.Fil: Iacono, Marisa A. Hospital Castro Rendón; Neuquen, Argentina.Fil: Enria, Delia. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Virales Humanas; Argentina.Fil: Cappa, Stella M. González. Universidad de Buenos Aires; Argentina.Person-to-person transmission of a hantavirus was first confirmed during a 1996 outbreak of hantavirus pul- monary syndrome in southern Argentina, where Andes virus is endemic. To identify other episodes of secondary transmission, we reviewed reports of 51 cases of han- tavirus infection from this region (November 1993–June 2005). Nine clusters involving 20 cases (39.2%) were found. Two patients, who had symptoms 3 weeks after they shared risks for rodent exposure, were considered a clus- ter. The other 8 clusters each began with an index case, which was almost always fatal, followed 19–40 days later by the illness of at least 1 person who had close and pro- longed contact with the index case-patient. Person-to-per- son transmission was considered the probable source of these 8 clusters. The probability of initiating secondary cases was 41% for patients who died versus 4% for those who survived (p = 0.005). Interpersonal transmission of Andes virus infection should be considered even when rodent exposure cannot be definitively excluded

    Clusters of Hantavirus Infection, Southern Argentina

    No full text
    Fil: Lazaro, María Ester. Hospital Zonal Bariloche; Rio Negro, Argentina.Fil: Cantoni, Gustavo. Unidad Regional de Epidemiología y Salud Ambienta; Rio Negro, Argentina.Fil: Calanni, Liliana. Hospital Castro Rendón; Neuquén, Argentina.Fil: Resa, Amanda J. Hospital de área El Bolsón; Rio Negro, Argentina.Fil: Herrero, Eduardo. Unidad Regional de Epidemiología y Salud Ambienta; Rio Negro, Argentina.Fil: Iacono, Marisa A. Hospital Castro Rendón; Neuquen, Argentina.Fil: Enria, Delia. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Virales Humanas; Argentina.Fil: Cappa, Stella M. González. Universidad de Buenos Aires; Argentina.Person-to-person transmission of a hantavirus was first confirmed during a 1996 outbreak of hantavirus pul- monary syndrome in southern Argentina, where Andes virus is endemic. To identify other episodes of secondary transmission, we reviewed reports of 51 cases of han- tavirus infection from this region (November 1993–June 2005). Nine clusters involving 20 cases (39.2%) were found. Two patients, who had symptoms 3 weeks after they shared risks for rodent exposure, were considered a clus- ter. The other 8 clusters each began with an index case, which was almost always fatal, followed 19–40 days later by the illness of at least 1 person who had close and pro- longed contact with the index case-patient. Person-to-per- son transmission was considered the probable source of these 8 clusters. The probability of initiating secondary cases was 41% for patients who died versus 4% for those who survived (p = 0.005). Interpersonal transmission of Andes virus infection should be considered even when rodent exposure cannot be definitively excluded
    corecore