153 research outputs found
Income Alters the Relative Reinforcing Effects of Drug and Nondrug Reinforcers
Income is defined as the amount of funds, resources and/or time allowed to obtain goods over a specified period of time. This review discusses laboratory studies of income using methods of behavior analysis, behavioral pharmacology and behavioral economics. Initially, income was studied with respect to consumption of two types of the same good (e.g., food or drug), and later comparisons were made between food and nonfood rewards as well as drug and nondrug rewards. A consistent finding in these studies is that preferences between two goods change and often reverse as income is changed from low to high. Thus, reinforcing effects are not inherent in the goods, but they depend on the economic context (income, price of good, availability of substitutes). Another economic variable that has shown considerable impact on drug-reinforced behavior is the availability of nondrug alternative reinforcers which seem to function as economic substitutes. The present review also examines the interaction of income variables with price of drug (ethanol and phencyclidine) and availability of nondrug alternatives. It was concluded that price and availability of nondrug alternative are major determinants of drug intake. Changes in income dramatically alter preference between drug and nondrug items; however, income has a greater effect on consumption of nondrug alternatives than on drug intake. It was concluded that the optimal formula for reducing/preventing drug intake would be low income, high drug price and availability of inexpensive alternative nondrug reinforcers.
Reinstatement of methamphetamine seeking in male and female rats treated with modafinil and allopregnanolone
Background
Sex differences in methamphetamine (METH) use (females>males) have been demonstrated in clinical and preclinical studies. This experiment investigated the effect of sex on the reinstatement of METH-seeking behavior in rats and to determine whether pharmacological interventions for METH-seeking behavior vary by sex. Treatment drugs were modafinil (MOD), an analeptic, and allopregnanolone (ALLO), a neuroactive steroid and progesterone metabolite.
Method
Male and female rats were trained to self-administer i.v. infusions of METH (0.05mg/kg/infusion). Next, rats self-administered METH for a 10-day maintenance period. METH was then replaced with saline, and rats extinguished lever-pressing behavior over 18 days. A multi-component reinstatement procedure followed where priming injections of METH (1 mg/kg) were administered at the start of each daily session, preceded 30 min by MOD (128 mg/kg, i.p.), ALLO (15 mg/kg, s.c.), or vehicle treatment. MOD was also administered at the onset of the session to determine if it would induce the reinstatement of METH-seeking behavior.
Results
Female rats had greater METH-induced reinstatement responding compared to male rats following control treatment injections. MOD (compared to the DMSO control) attenuated METH-seeking behavior in male and female rats; however, ALLO only reduced METH-primed responding in females. MOD alone did not induce the reinstatement of METH-seeking behavior.
Conclusions
These results support previous findings that females are more susceptible to stimulant abuse compared to males and ALLO effectively reduced METH-primed reinstatement in females. Further, they illustrate the utility of MOD as a potential agent for prevention of relapse to METH use in both males and females
Resurrection of DNA Function In Vivo from an Extinct Genome
There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity
The Virtual Sociality of Rights: The Case of Women\u27s Rights are Human Rights
This essay traces the relationship between activists and academics involved in the campaign for women\u27s rights as human rights as a case study of the relationship between different classes of what I call knowledge professionals self-consciously acting in a transnational domain. The puzzle that animates this essay is the following: how was it that at the very moment at which a critique of rights and a reimagination of rights as rights talk proved to be such fertile ground for academic scholarship did the same rights prove to be an equally fertile ground for activist networking and lobbying activities? The paper answers this question with respect to the work of self-reflexivity in creating a virtual sociality of rights
Comparing genotyping algorithms for Illumina's Infinium whole-genome SNP BeadChips
The Brassica napus 60K Illumina Infinium™ SNP array has had huge international uptake in the rapeseed community due to the revolutionary speed of acquisition and ease of analysis of this high-throughput genotyping data, particularly when coupled with the newly available reference genome sequence. However, further utilization of this valuable resource can be optimized by better understanding the promises and pitfalls of SNP arrays. We outline how best to analyze Brassica SNP marker array data for diverse applications, including linkage and association mapping, genetic diversity and genomic introgression studies. We present data on which SNPs are locus-specific in winter, semi-winter and spring B. napus germplasm pools, rather than amplifying both an A-genome and a C-genome locus or multiple loci. Common issues that arise when analyzing array data will be discussed, particularly those unique to SNP markers and how to deal with these for practical applications in Brassica breeding applications
Recommended from our members
Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis
Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07
Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease
We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …